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Abstract

Embedded systems are being increasingly utilized across a wide variety of domains,
but the security aspect has been overlooked for a long time.

In embedded systems security, a topic that may have lacked the spotlight is that
of firmware updates due to their eclectic nature. For example, if a connected
light bulb starts malfunctioning because of its firmware, the seller might not push
an update due to the lack of adequate resources or because it may not be worthwhile
monetarily, as buying a new light bulb is inexpensive. In comparison, if the same
issue occurred with a car, it could become significantly more dangerous if the update
was not performed, and it would be costly to replace.

This master thesis attempts to address the question of firmware updating by
conducting an exhaustive study on a wide variety of devices and update methods.
Whether the devices are on the lower or higher end, if there is a means to update

their firmware remotely, they will be considered in this paper.

Keywords: Embedded Systems, Security, Firmware update, LoRA, Updates through
Blockchain, FPGA, SoC, OTA, State of the art, Static analysis, Abstract Interpre-

tation






Abstract

Les systémes embarqués sont de plus en plus utilisés dans une grande variété de
domaines, mais ’aspect sécurité en a longtemps été négligé.

En terme de sécurité des systémes embarqués, un sujet qui n’a peut-étre pas
bénéficié de I'attention qu’il mérite est celui des mises a jour de firmware en
raison de la nature éclectique de ces systemes. Par exemple, si une ampoule connectée
commence a dysfonctionner a cause d’'un probléme de firmware, le vendeur pourrait
ne pas faire de mise a jour en raison du manque de ressources adéquates ou parce
qu’elle pourrait ne pas étre rentable financiérement, étant donné que ’achat d’une
nouvelle ampoule est peu cotliteux. En comparaison, si le méme probleme survenait
avec une voiture, cela pourrait devenir beaucoup plus dangereux si la mise a jour
n’était pas effectuée, et remplacer une voiture n’est pas l'acte le moins coliteux.

Ce mémoire de master tente de répondre a la question de la mise a jour
du firmware en menant une étude erhaustive sur une grande variété de dispositifs
et de méthodes de mise a jour. Que les dispositifs soient de gamme inférieure ou
supérieure, 8’il existe un moyen de mettre & jour leur firmware & distance, ils seront

abordés dans ce papier.

Keywords: Systémes embarqués, Sécurité, Mise & jour de firmware, LoRA, Blockchain
pour la mise & jour, FPGA, SoC, OTA, Etat de I’art, Analyse statique, Interpréta-

tion abstraite
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Chapter 1

Introduction

Nowadays, embedded systems usage has been more and more widespread. Their
usage has been so ubiquitous that a new buzzword arose to talk about this field: IoT
— or Internet of Things — which emphasizes on their interconnected nature. Whether
it’s a plaything you would offer to your children for Christmas, the machine handling
your MRI scan or even inside a real airplane ; they are used everywhere for anything.
By definition an embedded system is a microprocessor-based computer designed to
perform a specific task and is not programmed by the end-user ; and this type of
computer is usually meant to be a small piece of a larger system. Aloseel et al. also
add up the following to this definition : "It is noticeable that the main criterion in
calling a system an embedded system is the embedding of a processing unit or the
integration of computational functionality within a larger physical system to steer
the functions of that Cyber Physcial System" [1]. Those systems are often used in
places that are quite critical in term of human lives, such ase.g. you wouldn’t want
the MRI scan to jeopardize your brain or your brand new Tesla to stop moving while
you were driving. Nevertheless, a malicious person — an attacker — could hack into
the MRI scanner or your car and make it wreak havoc. From this kind of scenarii
arise some security concerns, these concerns have remained neglected for quite a
long time in the embedded system field but have gained more and more spotlight
throughout the years. In his taxonomy, Gollman [14] presented the core points of
Computer security, those that can interest us in the context of embedded systems
are : Access control, OS Security, Internet Security and, Software Security. For this

state of the art, the two that might be the most important are the first (Access
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control) and the last one (Software Security).

Firstly, Access Control is about regulating access for unauthorized users. This
topic then became the CIA triad which is characterized as Confidentiality, Integrity
and Awailability. The first one — Confidentiality — is about preventing unauthorized
disclosure of information. Here in our context it could be preventing a third party
to access conversations in my own house through a hacked babyphone which I am
using to monitor my baby sleeping in his bed. The second one — Integrity — describes
the fact that unauthorized modification shouldn’t occur (as it is unauthorized). In
the context of embedded systems, it could be something as harmless as switching
two buttons on a TV’s remote, the information I get by clicking on the button "1" is
no longer the channel assigned to 1 but let’s say the one assigned to 6. Last but not
least, Awvailability is about keeping authorized users to access the protected data.
For example, putting black paint on a camera’s lens is a risk against availability
[14].

The second one, Software security is about having correct software without
bugs or undefined behaviours. An undefined behaviour is a piece of code where
the action cannot be predicted when the program was made, for example accessing
memory on the go without having used some kind of allocator results to be an
undefined behaviour because we don’t know what was their either if something else
could erase it ; Most undefined behaviours results in being bugs, an error in the
flow of the program. Other kind of bugs could be — as stated earlier — a poor
Memory Management or using dangerous patterns / functions that could lead to
Code Injection, code that was not supposed to be executed when we first wrote it.
To make sure a program is correct, there are multiple things that can be done such
as: 1/ testing it empirically, ensure each small part of a code does what it needs
to do ; 2/ or prooving it, meaning that we made mathematic specifications of the
program to ensure the correctness of each of these specifications and that they will
eventually terminate [14].

One has to take note that the previous paragraphs stem from the general case
not the embedded one. General-purpose computers are meant to be used by anyone
for anything, do multiple things at once, display things, run a lot of programs, can
get quite powerful, and so on, and so forth. The general purpose computer is a
Jack-of-all-trades yet, a master of none. In some cases, you need a master of one
and that’s where an embedded system — or as litterature often call them "Cyber-
Physcial Systems (CPS)" — can become something one needs, it is tailored to do a
particular task which doesn’t make it resource dependent and allow the manufacturer
to focus the costs on enhancing other aspects such as fitting in its environment, e.g.:
warmness, coldness, humidity, sand, etc ; or how well it can handle its task, e.g.:
having multiple audio codecs for a headset, temperature control for a fridge, how

grounded you desire your coffee beans before brewing it, etc. The security concerns
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A. Aloseel et al.: Analytical Review of Cybersecurity for Embedded Systems
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FIGURE 1. Typical architecture of embedded system.

Figure 1.1: Typical architecture of embedded systems by Aloseel et
al. [1]

for both of these fields might differ a bit too. In their review, Aloseel et al. [1]
described more extensively 'what is an embedded system ?" by describing those
system’s architecture, their role and more importantly their limitations. The first
point comes with Figure 1.1 which describes how manufacturers usually craft an
embedded system to make it fit its purpose perfectly.

In this figure, you can notice that the CPU is more or less the central point,
the nerve center of the architecture because 1/ it’s less expensive to build this
kind of system this way, and 2/ this allows easier communication between the core
components of the system. Even though it is the nerve center of these systems, one
must add components such as a memory or peripheral interfaces to communicate
with the outside world [1]. Finally, they also introduce us to the concept of Systems-
on-Chip (SoC) which is an integrated circuit that integrates all of the required
components for the given system. They then describe their role as a way to make
the computer interact with the real world through sensors and actuators.

Finally, they summarize the main limitations that exist in the embedded platform

being: 1/ their processing capabilities, they cannot run advanced solution to defend
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spoofing, signal/ radio jamming, PDoS, node outage, eavesdropping, ete. Perception Layer
selective fowarding, sinkhole, sybil, MiM, hello-flood, wormhole, etc. Network Layer
tampering with data, DoS attack. unauthorized access etc. Support Layer

|
|
|
|

sniffers/loggers, injection, session hijacking, DDoS, social engineering, etc. > Application Layer

Security Threats

Figure 1.2: Security threats associated with their corresponding layer
by Leloglu [2]

against attacks like a general purpose computer would with for example an anti-
malware ; 2/ their power supply, which limits the resources that can be allocated
to security ; 3/ operating in uncontrolled or harsh environments, which makes them
vulnerable to physical attacks ; 4/ remote and unmanned operations, which impose
difficulties in controlling physical access to the device or updating it ; and their
network connectivity which makes them also vulnerable to remote attacks [1].

To understand a bit more about the security concerns in the world of IoT and
embedded systems, Leloglu [2] reviewed and summarized research to find out that

there are 4 layers of functionalities for IoT devices and networks :

e Perception layer, this one brings together every threats related to sensors.

Example of sensors could be : RFID, heat, light, humidity or even acceleration.
o Network layer, to gather every wireless networks that exist in IoT.

e Support layer, regroups every "processing" tasks, when an input A becomes an
output B. This layer is quite related to the next one (Application), therefore

articles often treat those two together.

o Application layer, is for the final result of what the system / network pro-
duces. The author gives smart-traffic, precise agriculture and smart home as

examples.

These 4 layers are what an attacker will target on an embedded system when they
want to compromise it. Leloglu describes the following threats with the associated
layers (Figure 1.2).

Here the most interesting to understand are the followings :

e Spoofing: Falsification of data to gain an illegitimate advantage.

e DoS: Denial of Service, when a legitimate user becomes unavailable temporarily

or indefinetely to access data.

o Signal/Radio jamming: Type of DoS attack that consists on blocking the

communication channel.
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o Sinkhole attack: Redirection of every node to a given node to disrupt the

network, steal information or cause nodes to fail.

e Wormbhole attack: Type of DoS that consists to relocate data from its original

source to another point that was not the one planned originally.

o Eavesdropping: Sniff out confidential information by listening somewhere (a

sensor or a port) we should not.

e MitM: Man-in-the-Middle, a form of eavesdropping consisting in monitoring

or control communications between two parties.
e Tampering: Modification of legitimate data.

o Session Hijacking: Exploiting security flaws in authentication and session man-

agement.

According to the layers that have been exposed, we can focus on some more of
Gollman’s taxonomy [14]. If we put the spotlight on the network layer, we can study
Intrusion Detection Systems (IDS) which are pieces of software able to recognize
attack patterns on the network and alert if one is detected. Two kind of mechanisms
were described at that time: Knowledge-based and anomaly-based systems, the first
one relies on detecting known attacks and the second one is more about detecting
behaviours that deviate from the normal one. As IoT is specific due to all of the
existing limitations and the protocols used, generic IDS’s may not be suitable, this
is why Roy et al. proposed a mechanism able to detect efficiently some of the major
IoT-centric attacks using machine learning [15]. This approach consists of 4 main
mechanisms : (A) removal of multicollinearity, they used the Variance Inflation
Factor (VIF) to generate new features — points to look for in the model — and drop
the original ones that had a VIF too high when compared with the rest of the dataset
; (B) sampling, as some attacks are less frequent than others, we have less data for
these attacks, to avoid specialization on one kind of detection they undersampled the
most frequent ones and oversampled the less ones ; (C) dimensionality reduction, to
avoid overfitting — being able to detect only data we trained upon and not new data
— because of the two previous points they utilized Principal Component Analysis
(PCA) to turn the matrix resulted from training to a linear dataset ; and finally
(D) an effective classification algorithm, here they proposed a novel algorithm called
"B-Stacking" [15].

Another point that was discussed by Gollwan was Race conditions, a problem
known as "TOCTOU" — Time of Check (to) Time of Use" — in the litterature [14]. A
race condition is when two processes try to access the same data at the same time

and the result changes depending on the order of execution. Carpent et al. point the
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Inc-Lock-Ext and Cpy-Lock & Writeback mechanisms as able to protect against
this kind of attack [16], we will explore what those mechanisms entail to later.

Now that we have discussed more general concepts of security in embedded
systems, let’s say that we evaluate that the system we built is 1/ weak against
one of the threats or attacks that was discussed earlier and 2/ is critical enough or
(inclusive) costs too much money to be replaced everywhere (e.g.: a car), you would
want to fix the issue with an update but, how can an update be carried out safely
on this kind of devices 7 This is what this master thesis will try to answer.

To comprehensively address security concerns in IoT and embedded systems, it
is important to explore strategies for implementing software and firmware updates
effectively. These updates serve multiple purposes, including patching security vul-
nerabilities, improving system performance, and ensuring compliance with evolving
standards and regulations. Moreover, they enable manufacturers to proactively re-
spond to emerging threats, thereby enhancing the resilience of these systems. This
master thesis will delve into the significance of software and firmware updates in IoT
and embedded systems security. Its aim will be to investigate the challenges asso-
ciated with updating these systems securely, considering their main characteristics
such as limited processing capabilities, resource constraints, and operating envi-
ronments. By understanding these challenges, we can develop tailored approaches
for implementing updates that minimize security risks and ensure the integrity and
availability of these systems. Furthermore, it will explore state-of-the-art methods
and techniques for securely updating software and firmware in IoT and embedded
systems.

We will delve into the practical aspects of implementing software and firmware
updates in IoT and embedded systems. More specifically, we will explore key
methodologies and techniques such as Over-the-Air (OTA) updates, static analysis
for integrity verification in Chapter II ; and hardware-based protection mechanisms
like Protected Module Architectures (PMA) and Sandboxing throughout Chapter
I11.



Chapter 2

Working with Software

2.1 Over the Air (OTA) update

To keep a system up to date in the IoT, firmwares and softwares need to be updated,
and more than probably without a physical access to a computer, for example when
one tries to update the software of their smart car [17, 18]. This is where Over-The-
Air (OTA) updates come in the spotlight. This section will go through its concept,
how trust can be asserted during an update process and existing methods in the IoT
field to handle it.

2.1.1 Concept

The concept of OTA update is described by simply downloading a firmware update
using the network interface of a device then performing the update on itself [19]
(based upon [20]). According to Giindogan et al., regular updates are part of the
common security life cycle nowadays and it is required that it becomes a norm in
IoT too [21]. To make this process more regular, they describe their wokflow for
OTA firmware updates in IoT but it is general enough to describe a general updating
workflow for IoT. It consists in the following steps : Firstly, Version discovery,
devices naturally come out of the factory with an up to date firmware but depend-
ing on their network availability they may get one ore more update late throughout
time, therefore we need to know when to upgrade the firmware. Two main strategies

exist for this : proactively pushing notifications of an update or periodically polling
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the firmware repository (i.e.: where the update lies) [21]. Secondly, Retrieval of
firmware version is the process of retrieving the fitting update version, here in
this study it is down through a namespace management based upon Unix times-
tamp [21] but we could ensure this through versionning as it is done with SemVer
within the world of Rust using Cargo [22, rust-lang.org] (as an example of a different
method). Thirdly, Implicit consumption of firmware version, different devices
of the same class can have their polling intervals drift apart over the time, to avoid
this (we are still in the context of using Unix timestamps), the forwarding node will
compare the current epoch with the received one and update the device if this com-
parison results in being true (i.e forwarder_epoch > device_to_update_epoch)
[21]. Then comes the Retrieval of the image, which consists in providing the

end-device the version it asked for. This step can be done using two strategies:
e Going in one shot, downloading and then processing the whole image at once.

e Going by chunks, downloading parts of the update concurrently or in cascade

and handling it chunk by chunk.

Finally, they describe the Verification which ensures the update is a correct one
(we will dive onto this topic later) and the Fault tolerance systems against con-
nectivity loss and DoS detection.

Kim et al. describe a similar process to make an OTA software update for
vehicles, they specify that when the version discovery phase is successful, the server
containing the firmware update will (in their case) send a path (e.g.: an URL) to
reach the new update. They also describe their fault tolerance system as a "back to
square one" one, if any step fails, we go back to the version discovery phase [18].

But, now that we know how to perform an OTA software update, what are
the methods used to assert we have been provided the correct firmware or software

update ?

2.1.2 Assert trust

As of today, to assess we have been provided the correct version of an update, mul-
tiple methods exist. This master thesis will describe cryptography and blockchain.
Other methods such as remote attestation or abstract interpretation will be studied

later on to assert a different kind of trust.

Cryptography

According to Aloseel et al., cryptography is one of the two main defensive mech-
anisms to prevent disclosure attacks and other kind of cyber threats [1]. This is

Kaspersky’s definition of "Cryptography" :
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Alice encrypts a s

message using AB

Bob decyphers N
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(Alice's) Bob's

received
Secured communication
i Merged key AB 0 Merged key BA
Pubiic Key B ' ) between Alice and Bob )—’ gt ¥ PublicKey A
Bob's

(Alice’s)

Figure 2.1: Securing data with both private and public key

> Cryptography is the technique of obfuscating or coding data, ensuring that
only the person who is meant to see the information — and has the key to break
the code — can read it. The word is a hybrid of two Greek words: “kryptds”,
which means hidden, and “graphein”, which means to write. Literally, the word
cryptography translates to hidden writing, but in reality, the practice involves the
secure transmission of information. [23, kaspersky.com]

There are two ways to assert trust by using cryptography: 1/ Using symmetric
cryptography and 2/ using asymmetric cryptography. Symmetric cryptography re-
lies on ciphering and deciphering using the same process but reversed. For example,
a simple symmetric cryptographic algorithm could be adding 1 to every character’s
index in the alphabet in the chain such as "hello" becoming "ifmmn", the reverse pro-
cess would be subtracting the index by one. State-of-the-art methods rely on this
symmetric pattern but rather than using a simple +/-1 will use more robust and
meticulous algorithm such as AES, ChaCha20 or hashing using SHA-2 [24, ANSSI].

The other way to use cryptography is by using asymmetric algorithms. Asym-
metric cryptography uses a similar mechanism encrypting data using a key A, but
here it is a bit complexified because to decrypt this data you will be using another
key B. Key A is known as the public key, the key used to share data with you and
Key B is the private one, the one you use to read this encrypted data. This mecha-
nism can also be used in the opposite direction to assert that you wrote a message
because you are the only one to know the private key. Now that we have this basis,
we can illustrate using cryptography’s most famous protagonists, Alice and Bob.
If you merge both of the ideas that were explained earlier, asymmetric encryption
allows Alice to speak with Bob and only Bob ; and it will allow Bob to verify that
the message he received was sent by Alice and only Alice, see figure 2.1.

Now that this process has been explained, we can note that Zandberg et al. chose
to use only asymmetric cryptography in their prototype of the SUIT model and did
not use firmware encryption — a process that consists in concealing the firmware
on the device using cryptography and deciphering it on demand of a given feature
/ function call — because it would have required too much time to develop a well
made proof-of-concept using every refinement possible and it was more interesting

to focus only on the essential [25]. On the other hand, Aloseel et al insist on the
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fact that in constrained IoT devices, cryptography is not an easy task because of
its performance cost and that keys are vulnerable to unauthorized access if not well
protected and not made for data encryption [1]. This problem is so well known that
Apple introduced the Secure Enclave Processor (SEP) since the A7 processors that
is dedicated to handle all the cryptographic and authentication tasks [26].

In conclusion, cryptography in embedded systems presents both advantages and
challenges. On the positive side, cryptography serves as a defensive mechanism
against disclosure attacks and cyber threats, ensuring the security and privacy of
sensitive information. It provides a means to obfuscate or encode data, allowing
only authorized individuals with the appropriate keys to access it. However, there
are drawbacks to implementing cryptography in embedded systems. One notable
concern is the performance cost, especially in constrained IoT devices, where compu-
tational resources are limited. The use of cryptography can significantly impact the
device’s speed and efficiency, posing challenges for real-time applications. Moreover,
ensuring the protection of cryptographic keys from unauthorized access is essential,
as compromised keys can lead to security breaches. This necessitates robust key

management practices to safeguard sensitive information effectively.

Using the blockchain for certification

We have explored how cryptography can be used to certify that data comes from
Alice rather than Bob but other methods have been explored is Blockchain. The first
question that may rise is "What is blockchain 7", He et al. proposed the following
definition for a blockchain : "Blockchain is a widely popular, emerging technology
that utilizes distributed immutable ledgers, consensus algorithms, and smart con-
tracts to essentially provide an incorruptible digital ledger that can be used to record
and validate any kind of transaction" [19]. If we break this definition down, the terms
"ledger", "consensus algorithm" and "smart-contracts" can seem a bit abstract. The
first one — the ledger — is a register where we will write down any transaction —
a record — that will be done, e.g. "Alice pays 3 units to Bob". In the context of
blockchain, the ledgers are distributed, meaning that each node of the chain — a
computer — will hold the blockchain’s ledger [27, ledger.com]. Finally those ledgers
will hold immutable records that no one can update and are distributed across the
whole chain of ledgers.

The next bullet point is about the "consensus algorithms". According to Binance,
"A consensus algorithm is a mechanism that allows users or machines to coordinate
in a distributed setting. It needs to ensure that all agents in the system can agree
on a single source of truth, even if some agents fail. " [28, binance.com|. They
denote two main families of consensus algorithms : "Proof of Work" (PoW) and
"Proof of Stake" (PoS) but other exist. PoW was first introduced for bitcoins, the
validators will hash the data repeatedly until they find a satisfactory solution. As
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Figure 2.2: Lee and Lee’s overall procedure [3]

a hashing function works like a mathematical function — i.e. an input A will always
give an output B — validators will try to tweak the input until the conditions are
met. An example of conditions could be "hash must start with 00 and end with Az".
With this process in mind, it is easy to understand that if you provide an input A
and the blockchain returns a valid output B or C, the data is correct whereas if the
ouput was another solution D not matching the base predicate, the output would
be wrong and therefore the input data not accepted as valid [28].

On the other hand, PoS is not about hashing data to validate it which costs in
terms of power or hardware. It rather relies on an internal currency or for example
reputation in the "Proof-of-Authority” variant. This kind of algorithm relies on
voting for which node will be the next one using multiple peers which will hold
different wallet value or reputation points [28].

Finally, the last point that was highlighted was "smart-contracts" which are
— according to Wikipedia — "computer programs or transaction protocols that are
intended to automatically execute, control or document events and actions according
to the terms of a contract or an agreement. The objectives of smart contracts are
the reduction of need for trusted intermediators, arbitration costs, and fraud losses,
as well as the reduction of malicious and accidental exceptions." [29].

The articles studied proposed different approaches. Lee and Lee proposed a
framework based on the PoW consensus where the IoT device trying to update is
a node in the blockchain. Figure 2.2 describes their procedure. C1-1, C2-1 and
C2-2 describe cases where our device (n;)’s firmware is up to date. On the other
hand, C1-2 and C2-3 depict the cases where our device’s firmware is not up to date.
C1 procedures are associated with verifying nodes, nodes that will be checking the
integrity of the firmware. C2 procedures work by comparing the version of two given

devices (supposed to have the same firmware) in the blockchain [3].
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Firmware Provider A Firmware Provider B

O device

[ ]
Internal network Internal network

Firmware Requestor Firmware Requestor

Figure 2.3: Son and Kim’s blockchain organization [4]

Another proposition that has been explored is Son and Kim’s 'HyperLedger
Fabric combined with IPFS’ approach. This approach works by first creating a
private blockchain which will identify nodes using certificates and PKI (public key
infrastructure). This blockchain is a bit special as it uses the HyperLedger Fabric
project. This project does not use consensus algorithm but rather use two states,
the "world state" and "blockchain state". The first one displays only the latest record
available, whereas the second one holds every record that have been encountered.
The second step is focused on the record, which will be written in the order of arrival.
Finally, records can be assessed and trusted using IPF'S to store the actual firmwares
and their checksums [4]. They explain that their proposition cannot be based on a
single blockchain because, if all nodes — i.e. all devices — on the blockchain were to
hold at all time for each binary their firmware’s version, the size of transactions would
increase, which will cascade to increase the network traffic. Another issue is that,
even though IPFS ensures the integrity of the files, we cannot verify the integrity
of the URL that will be used to download the firmware’s version. Because of those
issues, their solution relies on using firmware providers and firmware requestors
blockchains at the same time.

Figure 2.3 schematizes how these two kind of blockchains would work together.
Firmware requestors are blockchains constructed to be an internal network — e.g.
an organization’s network — where targets for an update will be found. On the

other hand, another blockchain is built on an external network, the latter is the
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firmware providing blockchain, it will propagate the information about the firmware.
Finally, to make those blockchains work together, some brokers exist, their role is
to propagate firmware providers’ information to the firmware requestors. Using this
architecture coupled with IPFS — which guarantees integrity of the firmware — we
can assert the data integrity by sharing the IPFS URL through the blockchain [4].

However, IoT devices do not solely rely on conventional internet and networking,
for example a protocol that is widely used in IoT is LoRaWAN. LoRaWAN is a
protocol based on LoRA —i.e. "Long Range". The base protocol stack aims to be
one that can be usable on a low energy consumption device. It works using two
main layers : the physical layer and the MAC layer. The first one relies on the
fact that communications operate on particular bandwith thanks to a Chirp Spread
Spectrum modulation whereas the second one relies on other protocols, for example
LoRaWAN [30]. This protocol describes a network composed of end-devices (i.e. an
IoT device), gateways (forward packets between the former and the next point) and

network servers [30]. End-devices are classified as follows [31]:

o Class-A: Send / ask information when they have / need it, mostly random (as
we cannot predict it) and the time windows for their transmissions are really
short.

e (lass-B: Usually synchronized with the gateway using a Beacon. The server

"knows" when a device is listening because the time windows are scheduled.

e (lass-C: Almost continuously open to receive new information, which makes

them more resource-hungry but offers a lower latency to the server.

Another important point of LorRaWAN is that it allows the configuration of
Bandwidth, the width of the signal in hertz ; Spreading Factor, handles the size
of the data sent ; Coding Rate, the error correction ; and Transmit Power, which
also describes the power consumption [31]. Anastasiou et al. described a frame-
work to perform the remote update using both the blockchain described in this
chapter and the LoRa protocol we just described. According to them, even though
LoRa/LoRaWAN are becoming more and more popular, updating firmware using
these protocols is challenging because they do not offer the most efficient channel
for something as big as a firmware image. To make the firmware OTA update more
efficient, they proposed to add a security layer based on the blockchain [31].

This process works through the following steps : Create a new firmware that
will be held by UpdateServer ; next, transmit this firmware’s constraints to the
Blockchain. At the same time, the firmware data will be sent to the application server
which will negotiate with the network server the device’s class (this study was based
on class-C devices). The following step is the configuration of the node to perform

an update (Class-C multicast, synchronization of the clock) ; The initialization of
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the fragmentation session setup occurs at this moment, this is used by the end-
device to know if it is concerned by the update. Transmission of the firmware
update as fragment files. Verification of the sender’s identity through a public key
examination. Verification of the firmware compatibility and hardware compatibility
with the new firmware, this is were we start to use the blockchain, since at this point
the IoT end-device will send the blockchain the constraints of the received firmware.
The next step is preparing the reboot to apply the firmware update on the end-
device, this is done by marking this image as ready and asking the application to
validate this process may it be either automatically or manually handled. Once
reboot has occurred, the bootloader will verify if the update is available through
the computation of the CRC and decompression process to install the new firmware,
thus overwrite the previous one or if there is enough unused space available, write it
there. The last step is performed by the blockchain which will validate or invalidate
the end device thanks to the information it will send to it. If the information is not
what was expected, by the blockchain, a roll-back ID shall be send to the end-device
to downgrade the process [31].

In conclusion, on the brighter side, blockchain offers an incorruptible digital
ledger that ensures the integrity and security of firmware updates. By leveraging dis-
tributed immutable ledgers, consensus algorithms, and smart contracts, blockchain
provides a transparent and tamper-resistant mechanism for recording and validating
firmware transactions. This helps in certifying the authenticity of firmware updates,
thereby mitigating the risk of unauthorized modifications or malicious attacks. Ad-
ditionally, blockchain enables the efficient sharing and verification of firmware data
across multiple nodes, enhancing trust and reliability in the update process. How-
ever, there are also some darker sides associated with using blockchain for firmware
updates in embedded systems. One notable challenge is the complexity of integrating
blockchain technology with existing communication protocols, such as LoRaWAN,
which are commonly used in IoT devices. Furthermore, ensuring compatibility and
security between blockchain-based firmware updates and hardware configurations
requires careful consideration and robust validation mechanisms. Additionally, the
need for manual intervention in certain stages of the update process, such as valida-

tion and rollback decisions, may introduce delays and human error.

2.2 Static analysis

The previous part of this chapter was more about securing the transfer of the
firmware OTA update ... But multiple times, the integrity was an important subject
for this update’s process. The second part of this chapter will describe how we can

make sure the firmware is the correct one and how we can ensure it is not a harmful.
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One of the possibilities to ensure a given software is not harmful is by using static
analysis, i.e. analyzing code quality characteristics without program execution.
Static Analysis has been widely used in software development to assess the code
quality using tools such as linters but it is more broader than this as it focuses on
program analysis without executing them. This master thesis will study only three

fields of static analysis but more exist and are used.

2.2.1 Integrity Verification
Concept

Earlier in this reading, the sentence "even though IPFS ensures the integrity of the
files" rose but the term "integrity"' was — purposefully — not explained. Integrity
verification is a mechanism that checks if a given software is the one we expect,
that it was not modified unintentionally [5]. As of today, multiple methods exist to
ensure the integrity of a software, such as digesting it using MD5 or SHA to ensure
not even the slightest modification has occurred. Another state of the art method to
handle this process in the case of firmware updates is using a Prover/Verifier scheme
[5, 32, 16, 33].

This scheme shares some similarities with some of the consensus algorithms that
were studied earlier, Castro et al. describe this scheme using figure 2.4. On this
figure, we have 3 entities, the user who does an action that requires being verified,
the verifier that will request information to the Prover and the prover which will send
the information it was asked for [5]. The two latters communicate with each other
through three different tasks : Challenge, the verifier asks the prover information
about its current state that will depend on a challenge (Castro et al. and Carpent
et al. chose to send a random challenge [5, 16]), the verifier will also precompute
an expected value ; Calculation, the Prover computes according to its current state
a value that will be sent to the verifier ; and Classification, the verifier receives
the evidence that the challenge was completed and will judge whether the Prover
is a good or malicious peer or — in our case — software. According to different
propositions, the challenges are usually based upon the running software’s memory
[5, 32, 16].

To improve this scheme, Beyer et al. suggested to add a witness to this method.
The witness is used as a prover, will receive the same exact proposition as the prover.
The only difference between the witness and the prover is that we trust the witness
to be correct, whereas the prover needs to provide evidences on its correctness [33].

Now, let’s explore solutions that fit the IoT case rather than more general ones.
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Fig. 1. Phases of the Integrity Verification Scheme.

Figure 2.4: By Castro et al. [5]

Remote Attestation

The first solution we can explore to ensure integrity will be "Remote Attestation'.
According to Sun et al. this is the process we described earlier, proving a device’s
or software’s integrity to a remote verifier [32]. Carpent et al. dive a bit deeper in
this definition by explaining that "Remote Attestation involves verification of current
internal state (i.e., RAM or flash) of an untrusted remote hardware platform (prover)
by a trusted entity (verifier). RA can help the latter establish a static or dynamic
root of trust in prover" [16]. They also spotlight the fact that many methods have
been tested for the case where we try to prove the integrity of a single device and
they emphasize on the three main methods for implementing remote attestation.
The first one is a hardware-only solution that relies on Trusted Protected Modules
(see section 3.2). Their main advantage is that they are the most resistant to attacks,
while their main disadvantage is their cost, whether it is in complexity or money.
The second solution they highlight is a software-only solution which is very low-
cost compared to their hardware counterpart but this kind of solution faces a huge
drawback, we have to make a lot of assumptions against the kind of attacks we can
receive and "adversarial capabilities". De Castro et al. provide insights into various
attack models and considerations to mitigate them, including the risk associated
with hardware and communication channel vulnerabilities [5].

Finally, they make us pay attention to hybrid solutions that are based on both
hardware and software [16]. This hybrid approach is the one that Sun et al. took for
OAT [32] and that Carpent et al. chose for their framework [16] by both relying on
the TPM / PMA. This approach has the advantage to limit some of the assumptions
that software-only approaches would make by having trusted functions verify the
internal state (the notion of trust / protection will then depend on the hardware

solution for its main limitations).
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Time-consistency

Carpent et al. also described an approach based on time-consistency [16]. They
describe multiple approaches, the two most trivial ones would be : 1/ something
as simple as disabling interruptions — actions that when triggered stop every other
one to be registered such as e.g.: a key press on the keyboard or a button press
on a controller — which is done in the SMART primitive [34] ; 2/ copying to a
reserved and protected memory space [16]. Through these methods, we can make
sure that no other program will intervene while we are attesting the software /
firmware. But, if we try to look at this situation through the scope of safety-critical
systems, Carpent et al. warn us about the fact that we could miss some critical
deadlines and therefore those trivial methods aren’t the best to use [16]. In their
study, they evaluated multiple methods based on a few keypoints. The first keypoint
is based on malwares, they describe two kind of them : migratory malwares, they
will move themselves in the memory (copying then erasing their older version) to
remain invisible to an attestation algorithm ; and transient malwares, that will erase
themselves to "escape detection" [16]. Having those two "species" in mind, to attest
an host is corrupted, we have to detect if at a time T one or more blocks of memory
were holding on the unexpected process. This detection is ensured through a function
F secured through TPM and taking an input M at time ¢ (M?) will always return the
same output R. This results as the following mathematical function : F(M!) = R
[16]. While the previous definition holds, if R is considered benign — or expected to
be present — we can conclude no malware is present, and the opposite is also true, if
we consider R as harmful — or unexpected —, the malware cannot escape detection.

We discussed earlier about TOCTOU preventing mechanisms : Inc-Lock-Ext
and Cpy-Lock & Writeback. The first one is based on a progressive All-Lock
(named Inc-Lock) which will lock every bit of memory until all memory has been
locked, by allowing the lock to be released if the prover explicitly asks for this to
happen. The other one is based on a Cpy-Lock mechanism which will run the F'
function over a locked M’ memory, a copied version of M which will be locked while
computing F'. The writeback version will — once the memory has been trusted —
write it back to its original place instead of erasing it [16].

A similar approach is De Castro et al.’s integrity verification scheme called
EVINCED. This scheme allows integrity verification and remote attestation through
time and clock cycles [5]. Its operation works the same as the prover / verifier
method explained earlier with a few little tweaks. The first one is to compute the
cycle counts at the start (csiar¢) and at the end (cenq) of the calculation phase and
to return with the computed answer the total computation time (¢ = ¢eng — Cstart in
cycle counts) to solve the challenge. As the algorithm uses a while loop (see Listing
2.1), the computation time of two different input can be different. The authors also

note that this loop also acts as the main part of the algorithm in term of "elapsed
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time" [5].

1 Input: 1) Challenge C =(s, p, bs); // seed s, stop

criterion p and block size bs

N

2) TheProver instruction memory size ms.
Output: Response R
I ¢c0 <- CycleCount () // also c_start ;
5 h <- Shail(s) // the current answer ;
6 Prng.Seed(s) // pseudo random number
7 // generator ;
¢ while not IsPrefix(p, h) do
9 bl <- Prng.Get(max = ms/bs)
10 v <= Mp[(bl * bs)...[(bl +1) * Dbsl]
11 // Mp describes the
12 // memory of the prover ;
13 h <- Shal(hl|wv)
14 // 11 is the
15 // concatenation
16 // operation ;
17 end while
18 c¢f <- CycleCount ()
19 ¢ <- cf - cO0
20 R = (h, c)

Listing 2.1: Pseudo-code of CalcAlg [5]

On the verifier side, we have to take this while loop in account when creating the
challenge there choosing a p that would account for a computation time that isn’t
too small. To avoid this, the authors choose to create the same algorithm on the
verifier’s side but to make it use a for-range loop rather going from 1 to N rather
than a while loop to produce this p.

Finally, the classification phase will compare a verified prover’s (PY having
RY = (h",¢")) results on a given challenge with a potentially tampered prover’s (P)
result (R) where both h and ¢ must match with h” and ¢ respectively. These two
verifications allow to detect if we have changed any byte in the memory (h == h")
or if the computing algorithm has been changed (¢ == ¢") therefore, prove if P has
been tampered or not [5].

Time-based remote attestation for embedded systems offers a robust method to
ensure the integrity of software/firmware by evaluating the internal state of devices
at specific time intervals, thereby detecting and mitigating various types of mal-
ware. Additionally, approaches such as EVINCED proposed by De Castro et al.
provide a detailed scheme for integrity verification and remote attestation through
time and clock cycles, enhancing security measures [5]. However, the reliance on

time-based methods may introduce computational overhead and timing constraints,
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particularly in safety-critical systems where missing critical deadlines can have severe
consequences, as cautioned by Carpent et al. [16]. Consequently, while effective for
many applications, time-based approaches may not be suitable for scenarios where

real-time execution is essential.

Capturing the control-flow

While timed-based methods focus on evaluating the internal state of devices at spe-
cific intervals, another interesting approach is one based on the control-flow approach
which assesses the sequence and logic of operations performed within the software.
This is an approach that Sun et al. took for their attestation method called OEI
(which stands for "Operation Execution Integrity"). The authors describe their
method as the following : "An operation satisfies OEI if and only if the operation
was performed without its control flow altered or its critical data corrupted during
the execution" [32]. This operation works with the prover sending an unforgeable to-
ken and the other output data to the verifier which will then be used to tell whether
the prover is tampered or not. They informally define an operation to be a task with
independent logic which must not contain another operation. Every operation must
be declared by explicitly tagging the entry and exit points of this given operation
in order to construct a control-flow-graph (CFG) of the operation [32]. A CFG is a
way to describe a program by using a schematic, for example the C code in Listing

2.2 could be translated to the graph in Figure 2.5.

I int i = 0;
int j = 12;
if(i < 12) {
| j = 16;
5 } else {

N

13 operation_on(j);

15 while (j >= 0)
16 j=3 - 1;

12 print ("%d\n", j);

Listing 2.2: Code example for CFG
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Figure 2.5: CFG based on listing 2.2 (generated with code2flow.com)

This approach based on CFGs has been thought to solve two points :

o Enable remote detection of attacks such as control-flow hijack or data corrup-

tion.

e Demonstrate how feasible an operation-oriented approach is to detect these
kind of attacks.

But one reading through this section might be stuck to a question : "What is con-
trol flow 7" according to Wikipedia, it is "the order in which individual statements,
instructions or function calls of an imperative program are executed or evaluated"
[35, Wikipedia]. If we try to popularize what OEI does, it evaluates the code / logic
in a given task and intends to check if a device has been tampered or not through
how its control flow will react to a given input.

Now that the gist has been brought, we can see in more details what this control-
flow capture entails. According to the authors, the operation oriented nature of
embedded devices is ideal for this kind of method as it allows to avoid whole -
program instrumentation — having a program monitor at whole time what we are
doing — or always-on measurement collection — having a program monitoring at all
time every data related to our code — which makes this treatment lightweight and
more importantly suitable for embedded devices [32]. This lightweight approach
also allows a per-operation tracking which makes this approach modular, we choose
which part of the code needs to be instrumented and only this / these one(s) [32].
When going to the assembly code of a program, the control-flow graph of a program
is determined by three types of directives [32] : direct call/jump, usually call and
jmp instructions using a fixed address ; conditional branches, usually CMP and "jump
if X" instructions; and indirect transfers which work like the direct instructions
described earlier but with a register as an argument rather than a fixed address in
the memory. When generating the CFGs, the authors chose not to include direct
calls because "their destinations are unique and statically determinate" [32]. When
the CFG is built and the actual execution trace intended generated, this approach
goes back to the remote attestation explained earlier.

This method offers a comprehensive way for detecting attacks such as control-
flow hijacks or data corruption in embedded systems. By evaluating the sequence

and logic of operations within the software, this approach enables remote detection of
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tampering attempts, enhancing the security posture of embedded devices. However,
constructing and maintaining CFGs for complex software can be resource-intensive,

potentially impacting the performance of resource-constrained embedded systems.

2.2.2 Abstract Interpretation

In the previous part, the study of OEI has been covered, this framework is a part
of OAT (OEI ATtester) which performs a part of its remote attestation through
abstract interpretation using the CFGs discussed earlier. This section will explain

what is "Abstract Interpretation" and how it can be used in the context of IoT.

Concept

When talking about Abstract Interpretation, one of the most important concept to
understand and reach is soundness. Wikipedia defines it through the fact that
it must be valid — if and only if the premises are true, the conclusion can not be
false — and the premises are true. Another implicit idea when defining soundness
in a system means that we can logically prove any member of the given system [36,
Wikipedia]. Miné also add up by stating that "whatever the properties inferred by
an analysis, they can be trusted to hold on actual program executions" [37].

Rather than a platform, abstract interpretation and static analysers are usually
built on or for a programming language. Keidel et al. define the three following
challenges when building abstract interpretation for a transformation language, a
language that will usually assess formal components then be transpiled to another
language such as Gallina and the CoqProof platform will with C / Haskell. They
identify Domain Specific Features, features that cannot be found in generic-purpose
languages such as rich pattern-matching ; Term abstraction, how a semantic will be
translated to perform the best analysis [38] ; and Soundness that we defined earlier.
Here their approach is tailored for Stratego but this concept could be applied to
more generic compilers like CompCert for C, which guarantees that the program
obtained through the compilation will have the same semantic that were provided
in the base C code [38].

Now, let’s dive into what "Abstract Interpretation" is really about. To explain
what it is, Miné explains that to make a sign analysis, we could try out every
integer passed to a function and look at its sign through the program execution ;
this method will naively work but will also be quite inefficient on the time basis
(it wont be fast). A solution to avoid testing every single possibility would be to
abstract the computation. To examplify this behaviour, he took a simple modulo
function that takes inputs A and B and will return the remainder R of the operation,
nothing is done with Q. This program would look like this in C [37]:
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1 int modulo(int A, int B) {

2 int Q = O0;

: int R = A;

A while (R >= B) {
5 R = R - B;

6 Q=0+ 1;
7 }

8 return R;

Listing 2.3: Modulo function

An execution trace of this function could be the following (with A = 13 and B

=5 as input values) :
e« 1:A=13,B=5
« 2:A=13B=5.Q=0
« 3:4=13,B=5Q=0,R=13

e 4:132>5

5:A=13,B=5,Q=0,R=38
6:A=13,B=5Q=1R=38

e 4:8>5

5:4=13,B=5Q=1,R=3
6:A=13,B=5Q=2R=3

¢« 8:R=3

Now, if we go back to the modulo function, we want to use it only on positive
values. If we change the input values with abstract terms, we would have A = (> 0)
and B = (>0). As (> 0)+ (> 0) = (> 0), we can easily abstract this trace as the

following :
«1:A=(>0),B=(>0)
« 2:A4=(>0),B=(>0,Q=0
e 3:A=(>0),B=(>0),Q=0,R=(>0)
« 4:(20)>(>0)

—5:A=(>0),B=(>0),Q=0,R="
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I don't know anything about the topic, so let me try to give a very simple example and let's see
what others say.

Program:

« Initialise: T < 2.

o lterate: ¢ <— 2z — 1.
Now "z > 0" is an invariant. It certainly holds initially and after each iteration.

However, it is not an inductive invariant: merely knowing that x > 0 before an iteration is not
sufficient to guarantee that x > 0 after the iteration. After all, if x > 0 is all that we know, then we
might have £ = 0.1 before an iteration and thus & < 0 after the iteration.

On the other hand, something like "z > 1" is an invariant and also an inductive invariant. It is
easy to check that if £ > 1 before an iteration, then also © > 1 after the iteration.

Share Cite Improve this answer Follow answered Nov 25, 2010 at 17:18

ia Jukka Suomela
& 115k o2 ©53 0116

Figure 2.6: Suomela’s explanation on the difference between invariant
and inductive invariant [6]

—6:A=(>0),B=(>0),Q=(>0),R="

e 4:2>(>0)
—5:A=(20),B=(20),Q=(=0),R=?
—6:A=(20),B=(20),Q=(20),R="

« 8:R=?

You can notice that 0 + 1 = (> 0) which changes the abstract form of Q and
that (> 0) — 1 =7 because after this point we don’t know the type of R anymore. To
keep the idea that R = (> 0) we would need to keep the idea that R > B > 0 [37].

This allows Miné to bring the concept of "invariants" and "inductive invariants" on

the table. The first one is a mathematical property that remains unchanged after

operations, the second one is stronger in the fact that by definition, if it used to
hold at state S, it must hold at states S” or S”. A good example of their difference

is Suomela’s one [6] provided in Figure 2.6.

Bringing the concept of inductive invariants allows me to put the spotlight on

another really important part of abstract interpretation, being able to precisely know

when an iteration will stop and more importantly, when it wont stop [37]. If we keep

talking about integers, we can start by considering listing 2.4 :
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1 int loop_index = O0;
2 int counter = O0;
while (loop_index < 3) {
1 loop_index = loop_index + 1;

5 counter = counter + 1;

Listing 2.4: Simple loop code

If we do an execution trace like we did with the modulo function(2.3), we will

obtain a trace that will look like the following one :

e 1:loop_index =0
e 2:loop_index = 0, counter =0
e 3:0<3

— 4 :loop_index = 1, counter = (

— 5:loop_index = 1, counter =1
e 3:1<3

— 4 :loop_index = 2, counter = 1

— 5:loop_index = 2, counter = 2
e 3:2<3

— 4 :loop_index = 3, counter = 2

— 5:loop_index = 3, counter = 3

e 3:3 <3< wedon’t go back in the loop

But now comes the interesting question, what will the abstraction look like 7

Here’s an answer :
o 1:loop_index € [0,0]
e 2:loop_index € [0,0], counter € [0, 0]
o 3: Should iterate over loop_index € [0, 2]

— 4 :loop_index € [1, 3], counter € [0, +o0]

— 5:loop_index € [1, 3], counter € [1,+00]

o 6:loop_index € [3,3],counter € [0, +00]
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Here rather than abstracting terms over a sign (positive: (> 0), null: (0), nega-
tive: (< 0) and unknown: (7)), we abstract terms using intervals, the loop_index
being constrained by its starting point (0) and 3 (exclusive) and the counter that is
in the realm of N. loop_index is called the "loop invariant" because it is the invari-
ant that characterizes the loop we wrote. Another thing one can notice is that in
the loop, once we incremented loop_index, both bounds were incremented because,
from this point, we are not sure whether we have "overflowed" the iteration index
or not [37]. Now, what if we changed a single character in the source code provided
earlier 7 Rather than incrementing the loop_index we will decrement it, the code

is provided in listing 2.5.

I int loop_index = O0;

N

int counter = 0;
while (loop_index < 3) {
1 loop_index = loop_index - 1;

5 counter = counter + 1;

Listing 2.5: Infinite loop code

Now if we do the abstract analysis of this code, we get the following :

o 1:loop_index € [0,0]
e 2:loop_index € [0,0], counter € [0,0]
o 3: Should iterate over loop_index € [0, 2]

— 4 :loop_index € [—o0, —1], counter € [0, +0o0]

— 5:loop_index € [—oo,—1], counter € [1,4o0]
 3: Should iterate over loop index € [—o0, 2]

— 4 :loop_index € [—o00,—2], counter € [1,+o0]

— 5:loop_index € [—o0,—2], counter € [2, 400
e 6:loop_index € [3,3], counter € [0, +o0]

Here, for a better understanding, the first iteration has been unrolled from the
loop. As the loop_index is decremented inside the loop, the condition loop_index < 3
will always be true, thus the loop will never conclude. The three kinds of invariants
that we explored are not the only things that can be done in abstract interpretation
but they are some keystones to understand how everything works. For example, if

we take an array, the loop invariant can be used to see whether an out-of-bound
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access occurs or not. Another example is numeric invariant that can be used with
pointers or any kind of numeric data ; other forms could be shape analysis to analyse
dynamic memory allocations and recursive data structures ; cost analysis that refers
on the program executionrather that the semantics ; or backward analysis, a way
to analyse a program from a point of interest (rather than the start)and goes back
from that point to see if a given state can be reached or not [37].

Now that we own common knowledge of this topic, we can explore the embedded

case.

How it is being used in Embedded systems

Jarus et al. describe the main method to perform abstract interpretation in IoT
as "model transformation" [8]. A model is a way to describe a program or a part
of a program. They identify two concerns. The first one is the integration of the
different parts of a given system into a complete one, this iswhat they describe as
heterogeneous model composition ; the other one is the transformation of a model for
a system to a different one for the same system or a related one. In the context of
IoT, model transformation researches are focused on building hierarchical models,
i.e. models that allow different model types to be combined into more complex
model, as if we were playing with some Legos and building a car. Another option
could be the one described by Trippel et al., who go as far as transforming physical
parts of the system into software in order to fuzz test properties, try out a lot of
invalid, unexpected or random data as an input to a program or part of it [39]. This
transformation from hardware to software is a kind of model transformation. Others
like Vittorini et al. (with OsMoSys) and Barbierato et al. (with SIMTHESys) also
chose to use methods based upong software to verify whether a given embedded
system is correct or not [8, 40, 41].

Jarus et al. use this model transformation through abstract interpretation, model
are considered as abstractions of this system’s semantic. They note that a semantic
or model will hold properties (also called P, or P) — information about a part of the
given model — that concern only specific parts of this system, thus generating the
properties of a system then deriving those properties in the generated model, which
is — according to the authors — an effect that is required of abstract interpretation.
They organize their system semantics through lattices, a partially ordered set that
allows to know for any pair what is the supremum (the upper bound / join) and the
infimum (the lower bound / meet) ; here the meet constrains both elements on a
system whereas the join will display that either the constraint Py or the constraint
Py in the pair P is met [8]. The example they give is by choosing a property where
two elements can overlap themselves, for example a property where Py implies a
date to be january (1) and june (6) — which makes an interval of [1 : 6] — and P; to
be between april (4) and september (9) — [4 : 9] — the meet between Py and P; will
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Figure 2.7: Hasse diagram of a powerset of a set of 3 items (Source:
[7, Wikipedia])

be [4 : 6] whereas its join will imply [1 : 9]. They also emphasize that this method
shows elements that are incompatible, for example, if Py = [2: 4] and P, = [6 : 8],
both constraints on this property cannot be met neither joined, therefore it is an
"impossible" constraint [8]. To formalize a model (also called M or M), they used a
powerset lattice which will more or less directly describe a reliable model formalism
to describe the model [8]. The powerset of a set S is the set containing all of its
subsets, see Fig 2.7 for a visual example.

This approach of describing a model through lattices also allows us to see whether
in a system S, if a model M; and a model M5 are compatible or not, therefore if a
system contains coherent or contradictory properties [8]. They later introduce the
notion of a Galois connection, which involves monotone functions between two com-
plete lattices representing concrete and abstract domains. The abstraction operator
(o : P — M) abstracts a model from system constraints, while the concretization
operator (y : Ml — P) derives system constraints from a model. We can establishe

relationships between these operators and properties with the following formulae :

(vea)(p) I p (2.1)
(axoy)(m)Em (2.2)

Here, the complete lattice P represents the concrete domain (properties) while
M represents the abstract domain (models). The C and J are quite similar to
their round counter part, the only difference being that the one used here (and
by Jarus et al. [8, page 4]) denotes that we are only talking about partial ordering
rather than only sets [42, math.stackexchange.com]. The previous relatioship ensures
that abstraction relaxes irrelevant constraints but does not contradict the original

constraints, and concretization introduces additional constraints while maintaining
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Fig. 1. Sound model transformation.

Figure 2.8: Model transformation schematic of Jarus et al. [8]

specificity. Theythen proves that each Galois connection induces a correctness re-
lation on the abstract domain, providing a sound definition of model abstraction
where correct system constraints map to correct models and vice versa [8]. Having
explained this, we can now explain in an easier way "how they make their model
transformation" ; they make the following definition : "A model transformation from
a model M; to a model My is a semantically sound mapping T%Z(ml) s My — M2.
That is, if m; € M1 is correct, then T]J\‘/[/[f (mq) is also correct" which more or less
implies the following theorem if we also take in account what was said earlier : "The
mapping 7%2 (m1) = (apr, ©var ) (ma) is sound." [8]. The whole proof is provided in
[8, page 4, part "E. Model Transformation'] and the transformation can be visualized
in Fig 2.8.

Such an approach can be used in our context to verify if a given device M is
a part of the system S or rather if we can trust the properties provided by M; to

make sure we can update it safely.

2.2.3 Proof Carrying Code

The current need for authentication methods tailored to Embedded Systems re-
lies heavily on cryptographic techniques (which were explored shortly in 2.1.2), but
they have limitations in providing holistic authentication covering user, content, and
time/location aspects, especially on resource-constrained devices [43]. While source
and data authentication are primary classes of authentication, they alone cannot
fulfill all security requirements of embedded systems. Lightweight cryptography like
Elliptic Curve Cryptography can help secure some resource-poor systems, but many
devices, like light bulbs, remain vulnerable due to their inability to run cryptogra-
phy operations efficiently [43]. Simply adding processing power or hardware-based

security to devices may increase cost or energy consumption. Hence, there is a
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need for authentication mechanisms feasible for resource-constrained hardware while
maintaining low-cost and dependability. Additionally, the long-term security of cur-
rent authentication schemes is uncertain due to ongoing cryptanalytic advances [43].
Therefore, to try solving this problem, the last concept we will explore in this "static
analysis" part is the concept of "Proof Carrying Code", according to Wikipedia it
is "a software mechanism that allows a host system to verify properties about an
application via a formal proof that accompanies the application’s executable code"
[44, Wikipedia] and it was first introduced by Necula in [45] (which is not the first
paper he wrote about it but the most known).

Necula outlined the necessity for Proof Carrying Code (PCC) due to the chal-
lenges posed by mixing components written in different languages within software
systems. Traditional mechanisms such as sockets and processes are expensive and
inadequate for ensuring safety when incorporating foreign code. Essentially in dis-
tributed and web computing, ensuring that code from one agent respects the invari-
ants of another is crucial. Proof-carrying code addresses these issues by requiring
code producers to create safety proofs. Consumers can efficiently validate these
proofs to ensure code safety without relying on external authentication or cryptog-
raphy [45]. It was initialy employed in network packet filters and ML’s runtime
systems (a programming language, short of "Meta-Language"), providing technical
details and theoretical foundations for its soundness and adequacy [45]. Since Nec-
ula’s introduction the concept of PCC has evolved and nowadays its trustworthiness
does not have to be proven anymore. Subsequent subsections will explain how it

works and how it has been used in an embedded context.

Concept

As explained earlier, Proof-Carrying Code (PCC) is a technique that addresses the
challenge of ensuring the safety and trustworthiness of executable code, especially
when incorporating components written in different languages or originating from
untrusted sources. Necula described PCC as a mechanism in which code producers
generate a safety proof alongside their executable code [45]. This safety proof attests
that the code adheres to a formally defined safety policy, which includes safety rules
describing authorized operations and associated preconditions, as well as an interface
specifying calling conventions between the code consumer and the foreign program
[45]. He also described the lifecycle of a PCC binary which involves three stages:
certification, validation, and execution [45]. During certification, the code producer
verifies that the source program conforms to the safety policy, generates a proof of
successful verification, and encodes it along with the native code to form the PCC
binary. In the validation stage, the code consumer quickly validates the proof part
of the PCC binary using a straightforward algorithm, ensuring that the code obeys

the safety policy. Finally, in the execution stage, the code consumer can execute
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the machine-code program multiple times without additional runtime checks, as the
validation stage ensures compliance with the safety policy [45].

While PCC ensures safety and trustworthiness, Beyeret al. extend the concept
by introducing flexibility in the form of correctness witnesses which we explored in
section 2.2.1 [33]. Instead of strictly requiring a full proof, their approach allows
for less detailed witnesses, reducing the burden on the validator while guiding it
towards the proof. They emphasize the separation of concerns, treating the wit-
ness as a first-class object separate from the program, which enhances flexibility
and maintainability [33]. Another approach inspired by PCC could be Wu et al.’s,
they propose the idea of Assurance-Carrying Code (ACS) as a means to ensure
the trustworthiness of software components in a supply chain [43]. In ACS, each
software component carries its own assurance case, enabling system developers to
verify the safety or security of the code before integrating it into the supply chain
[43]. This approach mirrors the concept of PCC in providing assurances about code
integrity but extends it to the physical world, enabling trust in software components
throughout their lifecycle.

Similarly, Matsuno et al. drew inspiration from PCC to develop an Assurance-
Carrying Code system that integrates with a software supply chain [46]. Each
software component is accompanied by an assurance case, represented as a Goal
Structuring Notation (GSN) diagram. Before integration, the assurance carrying
code system checks the assurance case to determine the component’s suitability for
inclusion in the supply chain, ensuring overall system security [46].

Overall, PCC and its derivatives offer mechanisms for ensuring the safety, trust-
worthiness, and integrity of executable code, whether in isolated programs, dis-
tributed systems, or software supply chains. These techniques address the challenges
of code verification and trust establishment in diverse computing environments, con-

tributing to the development of secureand reliable software systems.

Embedded scenarii

The Correctness witnesses introduced by Beyer et al. are evidences provided
by verification processes to demonstrate that a given program satisfies a specified
set of requirements or specifications. Unlike violation witnesses — they have been
introduced by Beyer et al. in [47] — which aim to identify errors, correctness witnesses
focus on confirming the program’s adherence to specified invariants at each control
state [33]. The process of analyzing correctness witnesses involves checking the
invariants annotated on each abstract program state. If these invariants hold true
for their corresponding states, the correctness witness is accepted ; otherwise, it is
rejected. Notably, correctness witnesses differ from violation witnesses in that they

do not contain assumptions that restrict the state space but instead include state
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invariants at each control state [33]. Overall, correctness witnesses play a role in
verifying program correctness and ensuring adherence to specified requirements [33].

To construct and verify correctness witnesses, two main approaches have been
employed: one based on k-induction in CPAchecker and the other based on au-
tomata in UltimateAutomizer [33]. In the CPAchecker-based verifier, the k-induction
technique is utilized to obtain unbounded safety proofs. This technique combines
bounded model checking with induction to verify candidate invariants for a verifica-
tion task, particularly those containing unbounded loops. The process involves itera-
tively asserting invariants for consecutive predecessors, with the aim of proving their
inductiveness. An auxiliary-invariant generator runs concurrently to strengthen the
induction hypothesis, gradually producing stronger invariants until the induction
proof succeeds. These auxiliary invariants, along with the main invariant, are at-
tached to the respective locations in the correctness witness [33].

On the other hand, Automizer follows an automata-based verification approach,
where correctness proofs are represented as sequences of automata. The program
and correctness specifications are transformed into a Control Flow Automaton (CFA)
with error locations, treating the CFA as an acceptor of a formal language. The ver-
ification process constructs automata iteratively over the program’s operations, each
accepting only infeasible sequences of operations. Once the union of these automata
covers the language accepted by the CFA, the verification process is complete, and
the constructed automata constitute a correctness proof for the program [33]. These
automata are then transformed into correctness witnesses [33].

During validation, both CPAchecker and Automizer consider each invariant as
an additional specification that must be proven [33]. CPAchecker confirms a witness
if it can validate all specifications, while Automizer confirms the witness if all speci-
fications, including the original one, hold true. If validation succeeds, the validators
produce another correctness witness containing all confirmed invariants, making
them not only consumers but also producers of correctness witnesses. This feature,
known as testification, is essential for cases where the validator’s trustworthiness is
in question, allowing for a chain of validators to enhance credibility [33].

Another vision is proposed by Wu et al.. They designed a Proof-Carrying Sensing
(PCS) framework for authentication in Embedded Systems [43]. The PCS mech-
anism relies on leveraging physical data available locally between closely located
devices to establish mutual trust. These data can either be intrinsic to the phys-
ical environment, such as temperature, luminosity, or noise, or extrinsic, actively
injected by devices into the physical world. Authentication protocols within the
PCS framework require the coordination of various expertise areas including signal
processing, statistical detection, cryptography, software engineering, and electronics.

The framework encompasses two main aspects: intrinsic and extrinsic signatures
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[43]. Intrinsic signatures refer to inherent signatures in devices, channels, and sens-
ing environments. These signatures can be exploited to authenticate devices and
channels, such as the Electric Network Frequency (ENF) in power grids, which can
be captured intrinsically and used for authentication purposes [43]. Additionally,
sensors may carry unique intrinsic traces like physical or electronic randomness,
known as Physical Unclonable Functions (PUFs) (we will explore them in more de-
tails in 3.2.4), which can be utilized for authentication. Extrinsic signatures, on
the other hand, are signals and data injected and monitored by a system. These
can include physical-layer watermarks, pilot sequences, or challenges injected into
an embedded system. By monitoring deviations from expected outcomes of these
signatures, potential abnormalities or malicious behavior can be detected [43]. For
example, Satchidanandan and Kumar developed a notion of watermarking in em-
bedded systems to detect malicious activity [48].

The vision of the PCS framework revolves around strategically combining dig-
ital, extrinsic, and intrinsic signatures for authentication purposes. Digital signa-
tures provide access control and protection against malicious actors, while extrin-
sic signatures offer alternatives to cryptographic primitives, especially for resource-
constrained nodes. Intrinsic signatures authenticate not only source and data but
also time and location of data collection [43]. Unlike traditional authentication mech-
anisms, PCS embeds authentication proofs within sensor data, allowing continuous
validation without resource-intensive cryptographic operations [43].

In conclusion, the PCS framework aims to address authentication challenges in
embedded systems by utilizing physical data for mutual trust establishment, in-
corporating intrinsic and extrinsic signatures, and strategically combining digital,

extrinsic, and intrinsic signatures for authentication purposes [43].

2.2.4 Summing up

In summary, the reviewed literature presents a comprehensive overview of meth-
ods aimed at ensuring the integrity of firmware updates in IoT devices. Various
approaches have been discussed based upon static analysis such as integrity verifi-
cation mechanisms ; the Prover/Verifier scheme for software authenticity assurance
; Remote Attestation is explored as a mean of verifying the internal state of remote
hardware platforms ; while time-consistency approaches are investigated to prevent
malware interference during updates. Moreover, integrity verification schemes like
EVINCED and OEI are examined, focusing on factors such as time, clock cycles,
and control-flow to detect tampering.

These methods offer valuable insights into enhancing the security and reliabil-
ity of firmware updates in the context of IoT devices. Furthermore, we discusse

the application of Abstract Interpretation in IoT, highlighting key concepts such as
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soundness, specific features, term abstraction, and inductive invariants. The explo-
ration extends to model transformation and proof-carrying code mechanisms, as well
as correctness witnesses and the Proof-Carrying Sensing (PCS) framework for au-
thentication in embedded systems. Overall, these concepts aim to ensure the safety,
trustworthiness, and integrity of executable code and data across diverse computing
environments, including resource-constrained hardware, thereby contributing to the

advancement of secure IoT ecosystems.






Chapter 3

Working with hardware

3.1 How different is it from software in this case study
?

3.1.1 Differenciation

Software and Hardware are two sides of the same coin, they work together to
make one piece of something. But as names differ, their purpose do too. Software
is all the high level code that will be written by a developer or engineer. The term
"high level" refers to an ordered sequence of instructions for changing the state of a
computer hardware part. On the other hand, hardware is the physical part of a
computer, may it be a hard-drive, a display monitor, the microprocessor or anything
that we can touch, it is hardware [49, diffen.com)].

In IoT and embedded systems, there are a lot of different CPU based systems
such as microprocessors, microcontrollers and digital signal processors (DSP), re-
configurable devices and application specific integrated circuits — shortened ASIC —
[50]. Most developpers will always work on the first kind of devices (microprocessors
/ microcontrollers), programming them using C or equivalent. But as Salewski et
al. do point out, it is not the only option that exist. Reconfigurable devices — which
is the superset that contains both complex programmable logic devices (CPLD) and
field programmable logic arrays (FPGA) — blur out the difference between software

and hardware which makes them programmable in a sense by using the right tools.

35
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For example in the case of their lab courses they use VHDL (a hardware description
language) with CPLD [50].

The rest of this thesis will focus on the main hardware mechanisms that ex-
ist to provide security during a software or firmware update in embedded systems
such as PMAs, reconfiguration, PUF or even a more recent technique that involves

sandboxing directly on the hardware (every term will be explained in due time).

3.1.2 Hardware / Software Partitioning

The first point we will explore is how we can "partition" hardware and software.
According to Apvrille and Li, it "intends to split the functions of a system be-
tween software components (Operating Systems, application code) and hardware
components (processors, FPGA, hardware accelerators, buses, memories, ...)" [51].
In the litterature, another term used for it is "co-design" (i.e. Hardware/Software
co-design) [52, 53, 50].

To explain a more thoroughly, partitioning is about determining how core com-
ponents of the software and core components of the hardware interact between each
other for each functionality of the system [51]. Under the term "functionality" comes
every kind of functions (in term of code), task or communication the system can
do. This approach is still quite close to the "software approaches" we studied ear-
lier, for example Apvrille and Li used abstract interpretation (2.2.2) with SysML-Sec
(which has been described in [54]) and TTool which is a FOSS "that offers modeling,
verification and code generation capabilities" [51, 55].

Apvrille and Li’s approach is guided by three pinacles : Safety, the avoidance of
system states that can cause personnal or property damage [51] ; Security, which
has been studied at length in 1 ; and Performance, the time needed for a system
to perform its task. They modeled every part of their partitioned system — namely
: abstract behaviour of tasks, algorithms, communications, architectures and hard-
ware components — so that they could simulate and formally verify any component.
This approach allowed them to evaluate and iterate over safety / security aspects

easily [51].

3.2 System on Chip (SoC)

Partitioning was still a lot about software. Starting from this point, we will study
mechanisms that are deeper and deeper into the hardware. The first one will be on
the brink between software and hardware, System-on-(a-)Chip — shortened as SoC.
According to Wikipedia, a SoC is an "integrated circuit that integrates most or all
components of a computer or other electronic system" [56, Wikipedia]. We talked
about FPGAs and ASICs earlier, those are used quite extensively to create SoCs.

The former is expensive to produce therefore it used more often to prototype than
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Figure 3.1: Apple’s SoC schematic [9]

as the final piece of a project (there are some special cases, one is reviewed in 3.3.2)
whereas the latter will be used in production because it would have been specifically
designed for it [57]. Of course, SoCs are not restricted only to FPGAs and ASICs,
some CPU-based architectures include SoCs. An everyday life example could be the
Apple-designed silicon [58] (we will come back to them soon enough).

This section will study how dedicated crypto-engine, safety verification of hard-
ware components such as the AXI bus, reconfiguration and Physically Unclonable

Functions are made and performed onto a system.

3.2.1 Dedicated crypto-engine

We have seen in section 2.1.2 the usage of cryptography in order to establish trust
between two peers. This section will rather explore why some systems will bring
their own cryptographic engine that only does cryptography, such as Apple’s SoC
having a dedicated AES engine in both the general part of the SoC and the Secure
Enclave (see Fig 3.1) [26, 58, 9].

Having a dedicated cryptographic engine allows to run cryptographic operations
(for given algorithms) more efficiently and more safely [9]. Behind the term efficiency,

studies show that computing cryptographic operations on the hardware directly
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Figure 3.2: Performance comparison on cryptographic algorithms be-
tween software and hardware [10]

consumes less energy, Kietzman et al. are quite extensive on it. For example, they
show that the processing time for classic cryptographic algorithms such as AES or
SHA and on state-of-the-art devices (nRF52840 / EFM32) the hardware version
operating 5 to 10 times faster than the software one and having a ciphering speed
enhanced by a factor of 20 to 30[10].

The fourth column displayed on Fig 3.2 shows the usage of an external cryp-
tographic chip (ATECC608A connected via nRF52840) [10]. This chip was also a
contestant in this study because is is one protected against side-channel attacks [10].
A side channel attack is an "exploit that aims to gather information from or influ-
ence the program execution of a system by measuring or exploiting indirect effects
of the system or its hardware" [59, techtarget.com|. Once again, we see the trade-off
between security and performance thanks to those two devices.

Even though this is a huge trade-off, we have the example of Apple that still
chose to propose (starting from A9 SoC) a crypto-engine in the Secure Enclave that
is also protected against side channel attacks such as power analysis [9]. The purpose
behind this idea is that this crypto-engine is dedicated to the tasks that require the
highest level of authentication / privacy — such as passwords or the FacelD features
— therefore, if the information this works with are the most sensitive we will find on
this phone (if one gets the PIN code of my phone, they can basically access most
information available on it), we can value the overhead of protecting this dedicated
crypto-engine to a maximum. For operations that require encryption but are less
sensitive and requires more performance than password encryption (such as file or

disk encryption / decryption), they use the dedicated crypto-engine [9].
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Vliegen et al. designed reconfigurable hardware (we will go back to the concept of
reconfiguration in 3.2.3) that uses cryptography as one of its main components. They
note that a cryptographic protocol should take three principles in account : data
confidentiality, prevent someone to read the communication ; data authentication,
prevent impersonation ; and mutual entity authentication, ensure that both sides are
communicating with the desired peer [60]. The protocol they designed establishes
session keys dynamically, enhancing security against attacks. Utilizing public key
cryptography reduces the need for centralized key storage, enhancing scalability and
security [60]. Their approach is pushed by the "cryptocore" — or to stick with the
terms we used previously, a crypto-engine — they realised that implements SHA256,
AES128, a Random Number Generator and an Elliptic Curve Processor [60] that
will then be used for reconfiguration.

If we go back to our context of firmware updates, Giindogan et al. remind us
that it is quite infeasible to perform asymmetric cryptography on low-end embedded
devices without hardware acceleration, as we described it throughout this whole
section [21, 10]. We can conclude that cryptography is an important and even
mandatory element in embedded devices security. The question is rather, "do we

want safer or faster cryptography ?7".

3.2.2 Intra-communication safety verifications

If we take a deeper look at what Apple did or even Vliegen et al. to link their
crypto-engines to the outside world, we see that there are output channels [60, 9].
Those output channels have to be verified, that’s what Meza et al. propose through
their safety verification method [61].

The first thing we have to note is that, this approach focuses on data buses.
To be even more accurate, on AXI bus following the AMBA AXI Standard. A
bus serves as a communication pathway between controller devices and peripheral
devices [61]. The AXI bus stall problem arises within this context, particularly when
multiple controllers contend for access to a shared peripheral. In scenarii where one
controller delays providing data after issuing a write request, it monopolizes the bus,
hindering other controllers’ access to the peripheral [61]. Despite the AXI standard’s
lack of specification regarding time limits for data provision, controllers can exploit
this ambiguity to unfairly affect the availability of the shared peripheral to other
components, potentially leading to system performance degradation [61].

Safety verification involves using tools to specify security properties and ensure
that a system complies with them, either through formal methods or simulation-
based approaches. Due to scalability concerns with formal methods, simulation-
based tools are often employed for safety verification, as exemplified by the method-
ology introduced by Meza et al., which utilize a simulation-based Information Flow

"

Tracking — shortened as IFT, which is a "verification technique that enables the
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tracking of information as it propagates through the hardware" [61, 62] — tool along
with custom ¢rigger modules to detect issues like the AXI bus stall problem [61]. To
address the AXI bus stall problem, Meza et al. propose verifying that each controller
provisions data within a specific time frame after booking the bus with a write re-
quest. This entails determining the acceptable delay for each controller based on
system constraints and then ensuring that controllers adhere to these limits [61].

In order to solve this issue, their methodology involves utilizing a custom trigger
module to track the state of write transactions for individual controllers. This
module receives inputs indicating the maximum delay limit for each controller and
monitors the incoming and outgoing AXI signals related to write transactions. It
outputs the controller’s state regarding write transactions, categorizing it as idle,
within the delay limit, or exceeding the limit [61]. By employing this module, system
integrators can assess controller safety and verify compliance with specified delay
requirements, thereby mitigating the AXT bus stall problem [61].

If we try to apply this concept to firmware updates, the trigger modules can
be used to monitor the state of write transactions during the update process. This
could allow us to monitor that the firmware update proceeds smoothly and efficiently
without encountering delays or stalls, thereby reducing the risk of update failures
or system instability. Additionally, the modules can enforce time constraints on
write transactions, ensuring that firmware updates are completed within a specified

timeframe, which enhances overall system reliability and security.

3.2.3 Reconfiguration

Now that communication between components of a system has been explored, we
can take a look at reconfiguration. This concept is a special one among firmware
updates in the sense that, when reconfiguring the system, you don’t change only the
software but also how the hardware will react. Due to this need to reconfigure the
hardware, we need to use a board that can be designed and redesign on the fly, we
will explore Vliegen et al.’s approach using FPGAs.

Their approach is called Dynamic Partial Reconfiguration (DPR). The word "par-
tial" involves dividing the FPGA into a single static partition containing essential
communication interfaces — such as the "cryptocore" discussed in 3.2.1 — and one or
more reconfigurable partitions housing the main application [60]. By segmenting the
FPGA in this manner, maximum reconfigurable resources are allocated to the main
application, enhancing its flexibility and adaptability. Furthermore, a soft-core pro-
cessor, MicroBlaze, orchestrates the overall system within the static partition, man-
aging the communication between IP cores and handling incoming network packets.
The reconfigurable partition operates independently and accommodates the main

application, allowing for dynamic updates while minimizing downtime [60].
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The methodology employed by Vliegen et al. for DPR is a regular updating
process, a server sends the bitstream — instead of the firmware — divided in ciphered
chunks to the device. Those chunks are then deciphered by using the crypto-engine
that lies in the static partition [60]. Only upon successful validation, the partial bit-
stream is written through the Internal Configuration Access Port (ICAP) for recon-
figuration, updating the behavior of the reconfigurable partition without disrupting
the main application’s functionality [60]. This approach ensures secure and efficient
FPGA reconfiguration, with downtime limited to the time required for transferring
and updating the partial bitstream [60].

In summary, thanks to the mutable nature of the FPGAs, this approach allows
to remotely change physical parts of a system that could have been deployed. The
main downside to this approach is the monetary cost of FPGAs, as described earlier,
their flexibility is needed mostly to prototype systems that will later be provided as

ASICs, that cost less to produce and consume less power [57].

3.2.4 Physically Unclonable Functions (PUFs)

The last SoC topic we will take on a hot topic of hardware security, Physically
Unclonable Functions — shortened as PUF [63]. Schulz et al. describe them as
noisy functions that are part of a physical object [64]. A "physical object" refers to
the hardware as those functions lie directly onto the electronic parts of the system
[58, 63]. The term "noisy" means that those functions are susceptible to noise — such
as [65, thermal (also called Johnson-Nyquist)] or [66, atmospheric] noises — their
return value can change because of the environment if we ask the function’s value
multiple times [64]. Schulz et al. add up on this noise that those functions can be
used deterministically through fuzzy extractors on embedded devices (see [67, 68])
[64].

Of course, we can use this concept in the field of firmware updates. We could
for example take a deeper look at remote attestation where Castro et al. suggested
to take a look at propositions from : Schulz et al., that chose to extend existing
software attestation protocols by introducing a PUF-based hardware checksum to
include device-specific properties of the prover’s hardware, leveraging limited exter-
nal interface throughput to prevent computation outsourcing and assure the verifier
of the original hardware’s involvement in the attestation process [64] ; Kocabas et
al. — whose attestation method derive from the one described by [64] — describe an
iterative method that integrates the outputs of the prover’s PUF into the software
attestation process, exploiting the inter-dependency between the software checksum
algorithm and PUF outputs to ensure both device identity and software integrity,
while addressing challenges such as efficient prediction of PUF outputs and the need
for PUF designs with high throughput and large challenge/response space (see Figure
3.3) [11] ; and later Kong et al. — their approach is based on [64] and [11] — approach
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Figure 3.3: Difference between software and hardware based attesta-
tion [11, Figure 1]

introduces the integration of the attestation checksum computation with a compre-
hensive PUF system, which includes features like error correction and obfuscation
networks, providing a more sophisticated and comprehensive solution compared to
traditional PUF-based attestation methods [69]. But Castro et al. also emitted a
warning about the fact that it might require additional hardware to implement the
usage of PUFs, which may have an unexpected overhead cost [5].

Another method we can look at is Prada-Delgado et al. which is directly made
for firmware updates over BLE. Their communication use are obfuscated through a
PUF-Based approach. This obfuscation method involves a registration phase during
which symmetric cryptography is utilized to establish the initial communication be-
tween IoT devices and the server, ensuring secure transmission of information during
firmware updates. During this phase, the devices make useof the intrinsic random-
ness of the SRAM start-up values generated with PUF, to generate unique identifiers
and nonces [63]. These start-up values are classified based on their characteristics,
with certain cells chosen to obfuscate information and others to provide nonces.
Through a defined operation involving these values and a unique random key set
generated by the manufacturer, termed Helper Data (HD), the devices generate and
store encrypted keys for future firmware updates [63].

Following the registration, in the reconstruction phase, when a device is activated
by a client, it utilizes the SRAM start-up values to reconstruct the original key set.
Although the values used for obfuscation may not exactly match those recorded
during registration due to potential bit flipping, they are manipulated using error
correction codes to obtain the original key set [63]. Subsequently, a Key Derivation
Function (KDF) is employed, incorporating nonces from both the server and the
device, to derive a new key set for future updates, ensuring continual security [63].

Their communication protocol is trustworthy due to several factors. Firstly, the
encryption and authentication keys are utilized only once, ensuring that firmware
updates are released by a trusted source and mitigating the risk of compromise
[63]. Secondly, despite potential errors such as transmission and reception errors
or response delays, the update process is designed to proceed correctly, thereby

maintaining the integrity of the firmware. Lastly, the protocol includes mechanisms
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to detect interruptions in the update process, such as power loss during the update,
allowing the device to recover and resume the process seamlessly, thereby ensuring
the security and reliability of the update mechanism [63].

The integration of PUFs into firmware updates offers several benefits and draw-
backs. On the positive side, PUFs provide a robust mechanism for generating unique
identifiers and nonces, enhancing the security of communication between IoT devices
and servers during firmware updates. Additionally, PUF-based obfuscation can be
used to ensure that encryption and authentication keys are used only once, minimiz-
ing the risk of being compromised and ensuring the integrity of the update process.
However, as it was pointed out by Carpent et al., implementing PUFs may introduce

additional hardware requirements, potentially leading to unexpected overhead costs.

3.3 Virtualisation-based Security

3.3.1 Protected Module Architectures (PMA)

The next abyss we reach during our dive is the one containing Protected Module
Architectres — shortened as PMAs. PMA’s are "hardware extensions that enable the
secure and isolated execution of software modules by means of fine-grained memory
access control" [53]. They are also the concept behind "GlobalPlatform’s Device Ar-
chitecture Trust" [70] described by Siddiqui and Sezer [12]. The latters also describe
the fact that PMA become more and more used to "harness, build and maintain
robust security". In Fig 3.2, they display how embedded systems have evolved to
gain security. The (4) Virtualisation-based Security corresponds to the step we are
describing here (and in the next section). On the other hand, you can notice (3)
Dedicated Crypto-engines and PUFs that were discussed earlier come into the (5)
Hardware-based Trusted Computing, which should be the approach we should aim
for [12].

This section will further detail the different PMA that exist nowadays and how

they are used security-wise.

Different kinds

Vendors like Intel, ARM and Risc-V have developped their own solutions, namely
Intel SGX, ARM-TrustZone and Hex-FIVE Multizone Security. Each of these three
have their own specificities but some base foundation remain within GlobalPlat-
form’s Device Trust Architecture framework.

First, they all share a virtualization-based security approach to create ¢solated en-
vironments within the processor. These isolated domains, often referred to as "secure

worlds," are designed to protect sensitive data and code from unauthorized access
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Figure 3.4: Evolution of Embedded platform security architecture
[12]

or modification [12]. Secondly, each implementation employs a form of hardware-
enforced memory and peripheral isolation to maintain separation between secure
and non-secure domains. Finally, all three technologies aim to minimize the risk of
human error and software vulnerabilities by implementing lightweight and respon-
sive security solutions, such as bare-metal kernels or policy-driven security environ-
ments [12]. By prioritizing hardware-based security mechanisms and minimizing the
reliance on complex software stacks, these implementations strive to enhance the ro-
bustness and resilience of the overall system architecture against potential security
threats and attacks [12].

As for distinct features, Intel SGX employs enclaves to partition sensitive infor-
mation, accompanied by a system call mechanism for transitioning between trusted
and non-trusted execution environments, albeit vulnerable to exploitation via syn-
chronous and asynchronous entry/exit points [12]. ARM’s TrustZone, on the other
hand, introduces a dual-domain system architecture, comprising secure and non-
secure worlds, governed by a security monitor and enforced by address space con-
trollers [12]. Finally, Hex-FIVE MultiZone Security offers a fine-grained compart-
mentalization approach through a lightweight bare-metal kernel, facilitating policy-
driven hardware-enforced separation of resources and utilizing physical memory pro-
tection controllers to filter data communication requests [12].

On the other hand, Van Bulck et al. present lighter solutions such as the San-
cus architecture which extends the concept of Self-Protecting Modules (SPMs) to
low-end platforms, such as TI MSP430 microcontrollers, facilitating hardware-level
module protection [53]. SPMs represent a safeguarding mechanism within shared ad-
dress spaces, delineated by a public code segment and a private data segment. They
are accessible only through predefined entry points, maintaining an independent call

stack to insulate control flow from external influence. Memory access within an SPM
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is regulated by Protected Memory Accesses, where the program counter must align
with the corresponding code section for access [53].

Through remote attestation (2.2.1), Sancus assures software deployment integrity
and confidentiality, employing symmetric cryptographic keys derived from module
contents. Unique module identifiers expedite authentication and access control en-
forcement. Sancus automates SPM creation via a dedicated C compiler, embedding
secure entry and exit code stubs for integrity verification and context management.
TrustLite and TyTAN architectures offer alternative approaches, featuring config-
urable hardware memory protection units and trusted software layers for dynamic
loading and attestation. These architectures collectively enhance embedded sys-
tem security through hardware-enforced module protection and runtime integrity

verification [53].

Usage in updates

Knowing those virtualization-based approaches, one reading this master thesis would
like to understand why they would be useful for firmware updates. Van Bulck et
al. point out multiple mechanisms that would still guarantee Real-Time availability
such as protecting the interruptions through a trusted software layer rather than
totally disabling them as it was done in [34, SMART] or having trusted threads that
could handle this process rather than untrusted one [53].

Other approaches based on Siddiqui and Sezer’s could be to implement active de-
fense mechanisms that integrate hardware and software layers to detect and respond
to malicious activities in real-time. Furthermore, trust-based security enhancements
should incorporate runtime response and recovery functions to complement passive
defense measures, particularly focusing on vulnerabilities targeting runtime Trusted
Execution Environments (TEEs) and microarchitecture [12]. Moreover, access con-
trol mechanisms must be enhanced to provide robust runtime security, utilizing
distributed access control primitives for fine-grained software compartmentalization
and detection of policy violations, thereby facilitating efficient response and recovery
actions against malicious activities [12].

In conclusion, PMAs can be of use for firmware updates, providing robust se-
curity measures to safeguard sensitive data and code from unauthorized access or
modification. Virtualization-based security approaches create isolated environments
within processors, minimizing the risk of human error and software vulnerabilities.
However, drawbacks include potential exploitation vulnerabilities, as seen with Intel
SGX’s enclave entry/exit mechanisms. Additionally, while PMAs enhance security,
they may introduce complexities in system architecture and require careful consid-

eration to ensure seamless integration with firmware update processes.
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3.3.2 Hardware Sandboxing

Finally, the last concept this master thesis will explore is sandboxing and more
appropriately "Hardware Sandboxing". For now this iteration of the concept has
been seen rather on higher end FPGAs used in edge computing [71, 72, 52] but more
conventional sandboxing options exist for IoT devices and networks, for example,
Jin Kang et al. presented IoTBox for smarthouses monitoring [73]. Here we will go
on with the Virtualisation- based security that was studied earlier 3.3.

In software security, Sandboxing is a mechanism used to run untrusted soft-
wares in an isolated environment. This is done to avoid malicious code that can
spread on the whole machine [74]. Hardware sandboxing is a concept that derives
from it and was introduced by Mead et al. in [13]. As it is presented by Bobda et
al., hardware sandboxes are the opposite of ARM’s TrustZone we studied earlier. In
"opposite", we have to understand that the TrustZone isolates trusted components
and marks them as secured thus making them hard to be accessed by other compo-
nents that can act freely anywhere else, while Hardware Sandboxing is more about
letting trusted components live as they want and restricting the access to untrusted
components that will be quarantined in their sandboxes [72].

This approach integrates checker components and wvirtual resources, along with
controller and configuration registers, to monitor and enforce security rules defined
by the system integrator [13]. Checker components are designed to inspect the
properties of signals associated with IP components within the sandbox, utilizing
techniques such as the Open Verification Library (OVL) to define and enforce signal
properties. Virtual resources within the sandbox emulate shared resources be-
tween trusted systems and potentially compromised components, ensuring secure
communication protocols to prevent denial-of-service attacks [13]. Additionally,
status and configuration registers facilitate communication between the sandbox
manager and the system, enabling monitoring of IP behavior and facilitating data
exchange within the sandbox. The sandbox manager oversees data exchange, han-
dles results from checkers, configures the sandbox, and manages virtual and physical
resource interactions, ensuring a secure environment for hardware operations [13].

Mead et al. took this approach to harden drones anti-jamming systems and
integrated at the boundary of the external radio-frequency (RF) receiver. Fig 3.5
shows the wiring of this system. This setup ensures that only legitimate signals,
compliant with the protocol, are forwarded to the flight control system via a virtual
receiver, thereby mitigating the impact of jamming attacks on the overall system
performance [13].

Bobda et al. took this approach a bit farther and developed a framework named
Component Authentication Process for Sandbozed Layouts (CAPSL) [72]. It aims at
automating the generation of sandboxes from hardware IPs, represented as compo-

nents with associated resource access rules in Property Specification Language (PSL).
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This framework takes inputs of components and PSL rules and produces complete
sandboxes suitable for integration into System on Chips (SoCs) [72]. The generation
process involves formal modeling of interfaces using Interface Automata — shortened
IA, they are a shared boundary that acts as a communication channel between com-
ponents — and extracting Linear Time Logic (LTL) representations of PSL rules.
These representations are combined to create behavioral standards for sandbox mon-
itoring [72]. Leveraging efficient composition and refinement techniques, sandboxes
are optimized to reduce resource requirements, such as by consolidating interfaces
of interacting IPs. The generation process also includes Labeled Transition Systems
(LTS) generation, where IA are mapped to corresponding LTS, and optimizations
are applied using a forward-matching algorithm and one-hot coding technique to
minimize flip-flop usage and improve design compactness and speed. This auto-
mated approach streamlines the design flow from specification to implementation,
facilitating the generation of VHDL code and drivers for FPGA integration and
enabling compatibility with Xilinx Vivado, Altera Quartus, and SystemC/TLM for
high-level simulation [72].

Hardware sandboxing could be used in firmware updates to ensure the security
and integrity of the update process. By isolating the firmware update process within
a sandbox, potentially malicious firmwares or updates can be contained and pre-
vented from affecting the rest of the system. Sandboxing also allows for monitoring
and enforcing security rules during the update process, ensuring that only legitimate
updates are applied, thereby reducing the risk of unauthorized access or tampering.
Additionally, automated generation frameworks like CAPSL facilitate the creation
of sandboxed environments for firmware updates, streamlining the development and
integration of secure update mechanisms into hardware systems.

To conclude hardware sandboxing’s largest drawback is that even though their
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overhead in performances is not tremendous, drones are considered as higher end
systems, they often bring in an OS, which is not doable on lower end systems that
may lack the adequate resources for such a process. On the other hand, sandboxing
data received before passing them to the system allows to certify that data will not

be harmful for the system.



Chapter 4

Conclusion

To conclude, throughout this master thesis we studied how to perform firmware up-
dates onto resource constrained devices more securely. Out of this, it becomes really
apparent that cryptography acts as a keystone to ensure confidentiality, authentica-
tion and integrity of an update.

As embedded systems are often viewed from two aspects, the software and the
hardware, we reviewed methods that would come from both sides of this coin.

Out of the software methods, one of the limitations that rose was about the com-
munication protocols used in IoT. They often differ from the usual network stack we
encounter for the better and the worst, an example being how integrating blockchain
communications into LoRA-based protocols has been difficult. On the other hand,
those methods allow to efficiently discover which hosts might be tampered or not,
thus helping us to decide whether we should update them or not. Further researches
could be led on how remote attestation might benefit from Jarus et al.’s model
transformation method.

As for the hardware side, we noticed how from one type of board to another
architecture might differ, thereby how to work with them might too. For example,
when Working with FPGAs, they can be reconfigured whereas trying to modify the
circuits of an ASIC is impossible. Going through the existing hardware methods,
it became clear that software should rely as much on hardware as possible to en-
sure security of its system, whether it is with a dedicated crypto-engine orthrough
virtualization-based techniques. Finally, using safety verifications such as those pre-

sented by Meza et al., as well as sandboxing the firmware update upon reception

49
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before installing might need to be further looked into to understand how they could

help in the context of firmware updates.
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A.2 Synthesis of the article

Question
What are the evolving mechanisms and policies for enforcing computer security
in IT architectures and software systems?

Computer security involves protecting sensitive resources in computer systems
through policies that regulate access and mechanisms for enforcement. This article
provides context to enforcement mechanisms by examining their original design for
specific IT architectures. It also touches on network security and concludes with
remarks on security evaluation.

Computer security encompasses four essential aspects. First, controlling system
access which involves regulating the entry points to computer systems, ensuring
that only authorized users can gain entry. Second, managing resource access focuses
on controlling the permissions and privileges granted to users for accessing and
utilizing system resources. Third, securing data in transit i.e. protecting sensitive
information while it is being transmitted between systems, preventing unauthorized
interception or tampering. Finally, protecting applications from malicious inputs
which is about implementing measures to prevent and mitigate the risks posed by
malicious code or inputs that can exploit vulnerabilities in software. These four
fields collectively form the foundation of computer security, safeguarding systems,

resources, data, and applications from potential threats and unauthorized access.

Possible trails (pointed by the authors)

As this is a taxonomy, we have a lot of available trails that are showcased. Some
of which would be : Regulating Access Control which can be described by the CIA
triad, confidentiality, integrity and availabality. While reading through this article,
we can also learn about the Commercial security that is bnased upon the data
we hold rather than how the software is built. This could be described by Database
Security or Role-based Access control (RBAC), the author also puts emphasis on the

following :

Few operating systems support RBAC directly, but native access con-
trol features might be adapted for that purpose. RBAC is more often
found in database management systems and workflow management sys-

tems.

This quotation allows me to introduce about the OS security which has also
been discussed, some of the examples that have been provided could be Discretionary
Access Control (DAC) or Mandatory Access Control (MAC). The next point coming
is the Internet Security, here the keystones will be Secure Channels such as SSL or
TLS, Flrewalls for access control and Intrusion Detection System to identify when

an attack occurs. As for the Software Security, a few mechanisms can make it
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easier to create bugs in a program that could be correct — without a malicious hand
— such as a poor Memory Management that could allow e.g. a buffer overflowing or
usage of dangerous patterns like Code Injections which result in executing code that
wasn’t supposed to be executed when it was first written. Sometimes, the issue can
come from concurrent acces which weren’t initially planned, this is a Race Condi-
tion. But some of these issues can be partly solved using Language-based Security,
an example of this could be the Garbage Collector in languages such as Java and
C#. Speaking of languages, the following noteworthy topic is Code-Based Access
Control. This is a user-centric approach, therefore more suitable for cases where
users can be trusted. Here the two main topics explored are Trusted Computing and
Digital Right Management (DRM). Now that we explored a bit of every topic, we
can delve into Web Security which relates a bit to every previous ones. Firstly,
there’s the Code Origin Policies which states that applets or cookies are restricted
to connecting back to the domain they originated from. Secondly, Cross-Site Script-
ing (XSS) that can be described as a kind of attacks — there are subkinds discussed
here, e.g.stored XSS, and DOM-based XSS — aiming to exploit the client’s trust in
a web server to execute malicious code. Thirdly comes Cross-Site Request Forgery
(XSRF), this one is about using the trust given by the session, the difference with
the XSS attack it that this one goes from the client to the server whereas the pre-
vious one goes from the server to the client. Lastly some countermeasures to this
kind of attacks have been explored. These include changing the execution model of
web applications, implementing input sanitization techniques on servers and clients,
and improving authentication mechanisms. The role of temporary secrets, message
authentication codes, and client-side defenses using proxies are discussed as poten-
tial solutions. The last topic explored is the Security Evaluation. It focuses on
assessing the security level of an IT system to provide customers with assurance.
Security evaluation, certification, and accreditation are distinguished, with the for-
mer analyzing a product against generic security requirements, while the latter two
involve specific customer requirements and deployment decisions. The influential
Trusted Computer Systems Evaluation Criteria (Orange Book) aimed at evaluating
operating systems for defense applications. However, evaluating operating systems
for commercial security has faced challenges due to diverse user requirements and
the evolving nature of functionality. Smart cards, on the other hand, have seen suc-
cess in security evaluation, benefiting from market demand and their inherent role
as security devices. Evaluating application software poses further difficulties, with

customization and usability considerations for end users playing a crucial role.

Research Question

How has computer security evolved in terms of policy enforcement mechanisms and



62 Appendix A. Sheet n°l

architectural layers, considering the historical foundations, technological advance-
ments, and emerging challenges, such as distributed systems, web-based policies,

digital rights management, and security evaluation of extensible software systems?

Approach

The approach taken in this research article is to examine the evolving mechanisms
and policies for enforcing computer security in IT architectures and software sys-
tems, specifically focusing on access control, resource protection, data security, and

application security.

Implementation of the approach
Here there is not much to add up as it is a taxonomy. The trails are more

interesting to investigate.

Results

The results highlights a few keystones. Firstly, security policies are written in
specific languages, often using lists in operating systems and firewalls. However, the
limited processing capability of lists restricts the sophistication of policies. Turing
complete policy languages can present undecidable questions about policies. To man-
age complexity, layers of indirection are introduced. The goal of research on policy
languages is to strike a balance between language expressiveness and formal founda-
tions. Additionally, the concept of noninterference provides theoretical foundations
for studying separation properties between components. Virtualization allows for
separate virtual machines for different applications, enhancing security. Different
options exist for implementing a reference monitor within a software architecture,
such as execution monitors and in-line reference monitors. Application writers need
awareness and tools to write secure code, as all code accepting external input can be
security relevant. Technological solutions should be complemented with organiza-
tional procedures and compliance with security best practices. End users now play
a crucial role in security management, including software installation, patching, and

policy decisions.



Appendix B

Sheet n°2

B.1 Description of the article

Title : Analytical Review of Cybersecurity for Embedded Systems
Link : https://ieeexplore.ieee.org/abstract /document/9300139

Authors list :
ABDULMOHSAN ALOSEEL, HONGMEI HE, CARL SHAW, MUHAMMAD
ALI KHAN

Authors affiliation :

School of Aerospace, Transport and Manufacturing (SATM), Cranfield University,
Bedford MK43 0AL, U.K.;Cerberus Security Laboratories Ltd., Bristol BS34 8RB,
U.K.

Name of the conference / journal : IEEE Access

Classification of the conference / journal :

Ql

Number of article citations (which source?) :
6 (Elicit), 8 (Google Scholar)

63



64 Appendix B. Sheet n°2

B.2 Synthesis of the article

Question

What are the key factors influencing cybersecurity for embedded systems (CSES)?
And can we find a solution to globally enhance CSES 7

In this research paper, the aim is to identify the key factors influencing cyber-

security for embedded systems (CSES) and propose a Multiple Layers Feedback
Framework of Embedded System Cybersecurity (MuLFESC) to address these fac-
tors. The introduction provides an overview of embedded systems, their evolution,
and their increasing vulnerability to cyber-attacks. The factors influencing CSES are
discussed, including components, characteristics, implementation, technical domain,
security requirements, problems, connectivity protocols, attack surfaces, impact of
cyber-attacks, security challenges, security solutions, and the role of manufacturers,
legislators, operators, and users. The security challenges faced by embedded sys-
tems due to their limited computing capabilities and connectivity are explored, with
real-world examples highlighting potential physical damage. The paper also ad-
dresses cybersecurity objectives, countermeasures, and risk management techniques
for CSES. Security risk metrics and the roles of involved parties are discussed, fol-
lowed by the presentation of MuLFESC, which proposes nine layers of protection and
new risk assessment metrics. The conclusion summarizes the findings, emphasizes
the importance of understanding the CSES landscape, and highlights the potential
impact of implementing MuLFESC in addressing the identified factors influencing
CSES.

Possible trails (pointed by the authors)

The authors discuss several trails related to embedded systems. They highlight the
integration of computing operations into physical systems, which gave rise to embed-
ded systems and led to significant advancements in various fields. Understanding the
architecture of embedded systems is emphasized as crucial for identifying potential
entry points and vulnerabilities to cyberattacks. Embedded systems consist of com-
ponents such as CPU, RAM, ROM, and input/output ports, with different designs
and configurations based on their specific purpose. These systems play a pivotal
role within cyber-physical systems (CPS), acting as the co-design of hardware and
software to steer the physical parts and perform predefined functions. However, em-
bedded systems also have their characteristics and limitations, including low power
consumption, small size, and limited computing resources, which pose challenges in
implementing advanced security solutions. These insights provide a comprehensive
understanding of embedded systems, their architecture, their role within CPS, and

the associated challenges.
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The following section describes the security risks associated with embedded sys-
tems. These systems are susceptible to various attacks that can compromise their
security. Examples include exhaustion attacks that drain power resources, physical
intrusion, tampering with system integrity, snooping attacks, and damage to sensors
or peripherals. Embedded systems, like conventional systems, have security objec-
tives of confidentiality, integrity, and availability. They face threats such as malware
attacks, unauthorized access to stored data or cryptographic keys, and authenticity
issues. The limitations of processors in implementing advanced security techniques
and their vulnerability to logical and physical attacks are highlighted. The sec-
tions also mentions the increase in attack surface due to hardware and software
components, the availability of low-cost attack tools, and the challenge of balancing
system flexibility with security restrictions. Various security problems related to
connectivity, data privacy, resource constraints, and the lack of a unified theoretical
framework are discussed. The paragraph further addresses classic attacks on em-
bedded systems, such as physical attacks, reconnaissance attacks, denial-of-service
attacks, privacy breaches, cyber-crimes, and destructive attacks. The challenges of
implementing comprehensive security measures in embedded systems and the need
for security-by-design approaches are emphasized. This section also touches upon
the diverse applications of embedded systems in IoT-enabled cyber-physical systems
and the challenges posed by non-controlled environments. Finally, it discusses the
importance of considering the weakest link in system security, understanding the
terminology of security risks, and the challenges faced during the design process,

including cost, energy optimization, and fast development cycles.

Research Question

What are the key factors influencing CSES, and how do these factors interact
and shape the security landscape of CSES? Furthermore, how can a comprehensive
understanding of these factors contribute to identifying security gaps and finding

more effective and robust solutions for enhancing cybersecurity in CSES?

Approach

This article being an analytical review, the approach taken was to go through a lot
of articles and compile their results and observations into one consequent but concise
article. Of this compilation results a new framework proposition, namely, Multiple
Layers Feedback Framework of Embedded System Cybersecurity (MuLFESC).

Implementation of the approach

The paper outlines 7 perspectives of risk metrics based on the security triangle
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(CIA). These perspectives include considering the Multiple Layers Feedback Frame-
work, analyzing attack methods (physical, logical/software-based, side-channel at-
tacks), classifying security risks into different types (vulnerabilities, exposure, threat,
attacks), evaluating the attack surface (hardware, software, network components),
assessing security risks based on the TCP/IP model, considering the limitations of
embedded systems, and taking into account the capabilities of attackers and the
value of assets and the risk X based on the twelve influencing factors of MuLFESC.

These factors play a crucial role in identifying gaps and weaknesses in current
countermeasures. The architecture and characteristics of embedded systems, such as
their limited computing capabilities and flexibility, pose challenges for implement-
ing advanced security solutions. Furthermore, the implementations of embedded
systems across diverse technical domains, including Distributed Control Systems
(DCS), Industrial Automation and Control Systems (IACS), and Cyber-Physical
Systems (CPS), necessitate making the implementation market-appropriate security
solutions tailored to specific applications like healthcare, communications, military,
and other sectors. The connectivity of embedded systems to the Internet expands
their functionality but also exposes them to remote cyber-attacks through various
attack surfaces and channels. Attack surfaces, such as Wi-Fi, Bluetooth, sensors, or
USB, serve as potential entry points for attackers. Understanding and addressing
these attack surfaces and channels are essential for implementing secure embedded
systems. Moreover, the impact of cyber-attacks extends beyond the targeted sys-
tem, affecting the entire system and connected systems. This underscores the critical
importance of considering the potential impacts and planning effective responses to
cyber incidents, emphasizing the need for comprehensive cybersecurity measures
from the design stage to response stages. Balancing the characteristics of embedded
systems with cybersecurity requirements presents a significant challenge in achiev-
ing robust and secure embedded systems. These solutions, implemented across the
different levels of the embedded system, should align with its nature and embrace a
"Security by Design" approach. Various actors, including manufacturers, suppliers,
developers, operators, and legislators, along with user behavior and awareness of
social engineering attacks, all contribute to securing embedded systems. By con-
sidering and addressing these interrelated factors, the MuLFESC framework aims
to establish secure Cyber-Physical Embedded Systems in interconnected domains,
ensuring their protection and resilience.

The MuLFESC framework provides a comprehensive and systematic approach
to building robust and secure embedded systems. It consists of nine layers, each
representing different components and entities involved in the system. By consid-
ering the twelve key factors cited described earlier and addressing vulnerabilities at
each layer, organizations can improve the design and implementation of their embed-

ded systems. The framework emphasizes the importance of iterative improvements
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and "Security by Design" concept, with the initial design stage being critical and
influenced by feedback from the other layers. It also highlights the significance of
adopting secure communication protocols, securing physical and computational com-
ponents, and complying with relevant legislation and regulations. The operational
phase serves as a real test for the effectiveness of security measures, with feedback
used to refine the system’s design and mitigate cyber risks. The MuLFESC frame-
work offers guidance for industry 4.0 and serves as a comprehensive reference for
security assessment and solutions. It helps organizations integrate security coun-
termeasures throughout the design stage and across different technical domains,

ultimately enhancing the overall security of embedded systems.

Results

In conclusion, this paper presents the results of an analytical study focused on
cybersecurity for embedded systems (ESs). The research identified key deficiencies
and gaps that need to be addressed to enhance the cybersecurity of ESs. It was
found that the limited resources of embedded systems pose challenges in imple-
menting compatible security solutions that align with their capabilities. However,
the study highlights the importance of finding effective and efficient security mea-
sures that do not drain system resources. By analyzing the architecture of ESs
and examining previous research in the field, critical factors influencing cybersecu-
rity in ESs were identified, shaping the landscape of the cybersecurity industry for
embedded systems. Additionally, a novel Multiple Layers Feedback Framework of
Embedded System Cybersecurity (MuLFESC) was proposed, which can contribute
to the implementation of comprehensive and effective "Security by Design" solutions
by providing feedback to the design stage of ESs. By considering these identified
factors, leveraging the MuLFESC framework, utilizing risk assessment metrics, and
involving all relevant stakeholders, security practitioners can conduct comprehensive
assessments and design application-specific security solutions, thereby enhancing the

cybersecurity of Cyber-Physical Systems (CPS) and embedded systems as a whole.
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C.2 Synthesis of the article

Question
What are the advantages of the proposed machine learning-based intrusion detec-
tion mechanism for IoT networks?

The article focuses on the increasing security breaches associated with vulner-
able IoT devices and the need for effective intrusion detection techniques in IoT
environments. Traditional intrusion detection mechanisms may not be suitable for
IoT due to limited device capabilities and specific protocols. To address this issue,
the authors propose a novel intrusion detection model that utilizes machine learning.
The model incorporates optimizations such as multicollinearity removal, sampling,
and dimensionality reduction to identify crucial features for intrusion detection with

fewer training data and reduced training time.

Possible trails (pointed by the authors)

The authors highlight several trails and approaches discussed in related work for
intrusion detection in IoT networks. They categorize intrusion detection mechanisms
into four types: signature-based, anomaly-based, specification-based, and hybrid.

Signature-based Intrusion Detection Systems (IDS) relies on predefined
patterns or signatures to detect intrusions, while anomaly-based IDS compares ac-
tivities with normal behavior profiles. The authors mention a lightweight signature-
based IDS proposed by Sheikh et al. that utilizes a signature generator, pattern gen-
erator, intrusion detection engine, and output engine. Liu et al. propose an Artificial
Immune System-based signature-based IDS, although its application in resource-
limited IoT environments is not explained. Rebbah et al. present a signature-based
IDS called IoTSecurity for IoT systems using the Cloud.

On the other hand, anomaly-based IDS, which are effective in identifying new
intrusions, have also been explored. Larijani et al. propose a random neural network-
based IDS, while Yin et al. propose a deep learning approach using a recurrent neural
network (RNN). Diro and Chilamkurti apply deep learning for attack detection in
social IoT networks. Alom et al. use deep belief neural (DBN) networks, and Ahsan
and Nygard propose a hybrid algorithm of Convolutional Neural Network (CNN) and
Long Short Term Memory (LSTM). leracitano et al. propose a statistical analysis-
driven optimized deep learning system for intrusion detection.

To improve accuracy and reduce false predictions, different strategies have been
proposed. Song et al. propose a multiple decision-based classification method, while
Khan et al. propose a hybrid-multilevel anomaly prediction approach to handle

unbalanced intrusion data.
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The paper also mentions the application of various machine learning algorithms
for intrusion detection using different datasets, such as the CICIDS2017 and NSL-
KDD datasets. Deep neural networks (DNNs) have shown promising results com-
pared to classical machine learning classifiers. Reinforcement learning-based IDS
using Deep Q-Network logic and attention mechanisms has also been explored.
Mechanisms like oversampling, Principal Component Analysis (PCA), and Ensemble
Feature Selection (EFS) have been applied to improve the performance of IDS.

Additionally, other machine learning algorithms, such as K-Nearest Neighbor
(KNN), K-MEANS clustering, Decision Tree, and Random Forest, have been inves-
tigated for intrusion detection based on the NSL-KDD dataset.

Research Question

How can a novel machine learning-based intrusion detection mechanism be devel-
oped to effectively detect cyber-attacks and anomalies in resource-constrained IoT
networks, while addressing the limitations of traditional intrusion detection systems

and optimizing for lightweight deployment?

Approach
The approach taken by the authors was to propose a novel intrusion detection
model that utilizes machine learning to effectively detect cyber-attacks and anoma-

lies in resource- constrained IoT networks.

Implementation of the approach
The approach described in the methodology consists of four main mechanisms:
(A) removal of multicollinearity, (B) sampling, (C) dimensionality reduction, and
(D) effective classification algorithm. The first mechanism involves identifying and
removing multicollinearity, which is done using the Variance Inflation Factor (VIF)
to measure the dependency between independent variables. The second mechanism
is sampling, where undersampling and oversampling techniques are applied to ad-
dress class imbalance in the dataset. The third mechanism is dimensionality reduc-
tion, which is achieved using Principal Component Analysis (PCA) to project the
independent variables to a lower-dimensional space. Finally, an ensemble learning
approach called B-Stacking, combining boosting and stacking algorithms, is pro-
posed for effective classification. This approach involves using multiple base models
as level-0 classifiers and a meta-model as a level-1 classifier to combine their predic-
tions. Overall, this methodology aims to construct an efficient classifier model for
detecting network attacks accurately using limited information and resources.
The evaluation of the proposed methodology involved testing it on two popu-
lar and publicly available datasets: CICIDS2017 and NSL-KDD. The CICIDS2017



72 Appendix C. Sheet n°3

dataset contains network traffic lows with both benign and common attack in-
stances, while the NSL-KDD dataset is a revised version of the KDD’99 dataset.
Various preprocessing techniques were applied to create balanced datasets for both
datasets, including combining certain classes and removing records with missing
values.

To evaluate the performance of the intrusion detection mechanism, several per-
formance metrics were used, such as accuracy, precision, recall, F1 score, and area
under the curve (AUC) for the receiver operating characteristic (ROC) and precision-
recall (PRC) curves. The confusion matrix was utilized to calculate these metrics
for each class in the datasets. The One-vs-Rest strategy was applied to extend the
binary classification metrics to the multi-class classification problem.

For the CICIDS2017 dataset, the proposed B-Stacking algorithm achieved a
high detection rate, correctly classifying the majority of instances across the dif-
ferent classes. The ROC and PRC curves covered a significant area, indicating
excellent performance. Comparative analysis with other state-of-the-art techniques
demonstrated the competitiveness of the B-Stacking algorithm in terms of accuracy,
precision, recall, and F1 score. Additionally, the B-Stacking model showed signifi-
cantly lower memory and CPU overhead compared to other algorithms, making it
lightweight and suitable for resource-limited environments.

Similar experiments were conducted on the NSL-KDD dataset, and the B-Stacking
algorithm exhibited strong performance. The ROC and PRC curves covered a sub-
stantial area, indicating high accuracy in classifying the different attack types. Com-
parative analysis with other intrusion detection systems showed that the B-Stacking
algorithm achieved superior accuracy compared to most approaches. Furthermore,
the B-Stacking algorithm demonstrated consistency in classifying instances across all
attack types, outperforming models that combined certain classes or showed incon-
sistencies in detection. The B-Stacking model was lightweight and required minimal

training and prediction time compared to deep learning-based approaches.

Results

This paper presented a novel IoT intrusion detection model called B-Stacking,
which leverages optimized machine learning approaches to detect cyber-attacks in
an IoT network. The evaluation of the model was conducted on two popular datasets:
CICIDS2017 and NSL-KDD. The results showed that B-Stacking achieved a high
detection rate and a low false alarm rate, outperforming most state-of-the-art tech-
niques. The model exhibited excellent performance in classifying different attack
types and demonstrated consistency across all classes. Additionally, B-Stacking was
found to be lightweight, requiring less computational resources compared to other
deep learning-based approaches. The study concluded that improving the security of

IoT infrastructure is crucial, and the proposed B-Stacking model offers an effective
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solution for IoT intrusion detection. Future work involves testing the model with

different IoT datasets and applying it to real-world IoT networks.
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D.2 Synthesis of the article

Question
What are the challenges and potential solutions for implementing secure firmware
updates in constrained IoT devices?

This paper tries to answer this question by exploring the challenges and solutions
for secure firmware updates in constrained IoT devices. It surveys open standards
and libraries, designs a prototype, evaluates performance and security, and exper-
iments with the IETF SUIT specification. The findings indicate the feasibility of
creating a secure, standards-compliant firmware update mechanism for IoT devices,
with recommendations for future work.

This paper explores the issues related to firmware updates in IoT devices and
presents a structured approach to address them. At first, the paper surveys avail-
able open standards and open-source libraries that offer generic building blocks for
enabling secure firmware updates in IoT devices. Building upon the surveyed build-
ing blocks, it will then focus on the design and implementation of a prototype that
facilitates secure firmware updates on a wide range of constrained IoT devices, em-
phasizing the avoidance of proprietary mechanisms and code. The paper then moves
to another important point, where the performance of various cryptographic libraries
relevant to the context is measured and compared. Additionally, the assessment the
security properties of the implemented prototype, providing insights into its effective-
ness. Furthermore, the following section highlights the measurement and comparison
of the performance of different deployment configurations using the prototype, along
with the presentation of the first experimental evaluation of the IETF SUIT spec-
ification. Finally, the limitations of the prototype are discussed, culminating in the
conclusion that a secure and standards-compliant firmware update mechanism can
be developed for IoT devices. The paper concludes by providing recommendations

for future work in this field.

Possible trails (pointed by the authors)

The possible trails pointed were as stated above the available open-source libraries
(prior work) and open standards. The section II points out some of the prior work
such as Embedded Software Design on Low-End IoT Devices with possibil-
ities being e.g. : Exploring the use of bootloaders and memory layout considera-
tions; Investigating different approaches for firmware updates ; Or examining the
use of scripts or miniature virtual machines for software updates. Another prior
kind of work explored is Backend Framework where discussions and highlight-
ments about backend architecture and securing the supply chain of IoT software,
Highlighting authentication, integrity protection, firmware encryption, and signing

mechanisms. They also discussed existing frameworks and standards like SUIT,
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FOSE, TUF, Uptane, ASSURED, and CHAINIAC. Lastly, the Network Trans-
port topic was brought down. Here, different approaches for disseminating software
updates through the network have been explored such as protocols optimized for
multi-hop, low-power wireless networks. The transport mechanism for updating
trusted applications running in trusted execution environments (TEEs) like Arm
TrustZone and Intel SGX were also discussed.

As for the section III, some open standards were discussed. The first topic that
comes up is Cryptographic Algorithms where the use of state-of-the-art crypto-
graphic algorithms, such as Elliptic Curve Cryptography (ECC) and Ed25519, for
securing firmware updates has been explored. Authors also point that there are
some research currently going on the standardization efforts in the post-quantum
crypto area. The second topic getting a highlight is Firmware Metadata and
the work of the IETF SUIT working group in standardizing a format for describ-
ing firmware updates, including the use of manifest and metadata. We are then
walkedthrough some Standards for IoT Firmware Transport were different
transport protocols, including Device Firmware Update (DFU) over specific low-
power MAC layer technologies and bus technologies, the use of CoAP over UDP and
CoAP over TCP/TLS for firmware updates over multiple hops or heterogeneous low-
power networks have been examined. There are some Standards for Remote IoT
Device Management that also got examined such as the Lightweight Machine-to-
Machine (LwM2M) protocol and its use of CoAP and DTLS for data transfer and
remote management of IoT devices. The CoAP Management Interface (CoMI) and
the Open Connectivity Foundation (OCF) as alternative standards for IoT device
management also found some highlight. Finally, here are some De Facto Standard
IoT Operating Systems, as identified by the authors. The discussion focuses on
the development of specialized IoT operating systems, including open source options
such as RIOT, Zephyr, Mbed OS, MyNewt, and Tock, along with commercial options
like pC/0OS and FreeRTOS. It also addresses the limitations of using off-the-shelf

open source operating systems like Linux for low-end IoT devices.

Research Question

What are as of 2019 the available open standards and open source libraries that
can be utilized to enable secure firmware updates for constrained IoT devices, and
how can these building blocks be leveraged to design a prototype that ensures secure
firmware updates for a variety of constrained IoT devices while adhering to open
standards?

Approach
The approach focuses on exploring available options, designing a prototype, eval-

uating its security and performance, and experimenting with relevant standards. It
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is described and discussed more extensively in sections IV and V (discussing the
prototype and some cryptographic matters) and some assessments on this approach
are made in sections VI and VII (security and performance wise). The section VIII

also tries to draw some results out of the approach taken.

Implementation of the approach
The approach has been implemented by designing a prototype that addresses
the functionality required for IoT device firmware updates. The prototype allows
an authorized IoT software maintainer to perform various tasks, including produc-
ing integrity-protected and authenticated firmware updates, triggering the device to
fetch and verify firmware images, delegating authorization to another maintainer,
and reconfiguring cryptographic algorithms if needed. The prototype focuses on sim-
plicity, open-source software, and compatibility with different IoT hardware vendors.
It utilizes standard building blocks such as the IETF SUIT manifest for firmware
metadata format, 6LOWPAN, IPv6, and CoAP transport stack, LwM2M IoT device
management solution, and digital signature algorithms based on ed25519 and ECD-
SA/P256rl. The RIOT operating system is used, but the prototype can be adapted
to other real-time operating systems. It consists of components and provides a
functional overview, starting with IoT device commissioning, where a minimalistic
bootloader, firmware image slots, and a firmware update module are implemented.
The RIOT build system is enhanced to allow building and flashing of the bootloader
and initial firmware. it also enables producing and uploading authorized firmware
updates. The build system allows a maintainer to build a new firmware image and
produce signed metadata. The firmware and metadata are then uploaded to the IoT
software update server through an HTTP-based API. The firmware update module
retrieves the firmware image and manifest from the update server, verifies them, and
stores the firmware image in flash memory. It will also perform necessary checks and
launch a reboot if the update is valid. Firmware updates can be scheduled period-
ically or on demand, and they can be pushed or pulled from the device. The pro-
totype supports multi-threading to prevent blocking during signature verification.
However, advanced scheduling for firmware updates is not a focus, and the emphasis
is on embedded system characteristics and constraints of constrained IoT devices.
Lifecycle management is facilitated through trust anchor updates, allowing delega-
tion of firmware update authorization and crypto agility. Different configurations are
possible based on the prototype, including baseline (without firmware update func-
tionality), Basic-OTA (over-the-air updates), IPv6-OTA (using an IPv6-compliant
network stack), SUIT-OTA (following the IETF SUIT manifest), and LwM2M-OTA
(using LwM2M v1.0).
The impact of cryptography on memory and power budgets is significant in

such a system. Measurements show that cryptography accounts for 50% of the
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memory budget and 68% of the total time spent on the firmware update process.
Choosing appropriate cryptographic algorithms and libraries is crucial to strike a
balance between size and speed. The authors have considered algorithms such as
ed25519 and NIST P256r1 curve signatures. Several libraries are reviewed, including
HACL*, TweetNaCl, NaCl, C25519, Monocypher, WolfSSL, TinyCrypt, and Mbed
TLS. They assess the libraries based on factors like code size, memory consumption,
speed, and configurability. Among the libraries, the C25519 library with ed25519
signatures is chosen for the prototype firmware update due to its favorable speed /size
compromise.

Overall, the implemented approach focuses on simplicity, open standards, and
compatibility, providing a foundation for secure and efficient firmware updates in

IoT devices.

Results
This article provides extensive documentation on the assessments of the prototype
and how it could be enhanced.

Firstly, the Security Assessment. This assessment comes from eight differ-
ent points. The first one being Tampered Firmware, every configuration had an
integrity check of the firmware, its metadata and the author to avoid an update
from an attacker. We then encounter Firmware Replay which is about avoiding the
reflashing of an older firwmmare by using a sequence number. The next point that
got assessed was the Offline Device Attack where only the LwM2M-OTA configura-
tion had the possibility to mitigate this threat using time information. Furthermore
comes Firmware Mismatch, this is about enforcing a firware to a device and a given
configuration, only the IPv6-OTA didn’t provide a way to mitigate this threat. An-
other aspect that was taken in account was Flash Memory Location Mismatch which
was successfully passed by every configuration by specifying the intended memory lo-
cation of the firware update. Moving forward we want to avoid Unexpected Precursor
Image which has been passed only by SUIT-OTA and LwM2M-OTA configurations
because they enable specifying the precursor software that must be installed be-
fore the update, allowing modular/incremental updates. Additionally, it was noted
that there was no configuration that could by default mitigate the threat of Reverse
Engineering through a vulnerability analysis because of the fact that none was pro-
tected against eavesdropping end-to-end, however, using (D)TLS in the SUIT-OTA
or LwM2M-OTA configurations can protect the firmware image during transmission
over the network. Finally, the Resource Fxhaustion was brought up, overservations
are that IPv6-OTA does not mitigate this threat, SUIT-OTA lowers the impact by
verifying the manifest before downloading the firmware image and LwM2M-OTA
adds an additional layer of defense by processing manifests conveyed via the device

management infrastructure.
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Secondly, the Experimental Performance Evaluation. This evaluation starts
off with a description. Three different kinds of microcontrollers from different ven-
dors were used : Atmel SAMR21, STM32F103REY, and Nordic nrf52840. All of
these are Arm Cortex M microcontrollers. As of the metrics evaluated, memory
measurements (RAM and flash size) and CPU performance measurements were the
ones considered relevant. Here, two costs got evaluated, the OTA wupdate func-
tionnality’s and the criptography’s ones. The first one is divided in two subparts,
the cost of OTA (The flash memory overhead for OTA functionality was compared
between the Baseline configuration and IPv6-OTA.) where the relative overhead
in flash memory footprint was 137%, while the RAM requirements increased by 3
kB. The second supbart was the cost of Standard-Compliance for OTA. The use
of standard-compliant specifications increased memory footprint, but the overhead
per image was small (around 10% compared to the Baseline scenario). Lastly, the
cost of Cryptography evaluation took different cryptographic libraries in account,
evaluating their flash memory, RAM usage, and speed. C25519 was found to have
a good compromise in terms of performance for ed25519 signatures. TinyCrypt’s
P256r1-based ECDSA outperformed most ed25519 implementations.

Lastly but most importantly, the paper suggests us the different keypoints that
came out of this experiment in the "Discussion: Going Forward" section. It
results in 8 keypoints which are (I quote) : State-of-the-art crypto is doable on IoT
devices, but it takes a toll, Making the firmware update reliable is key., Use del-
egation capabilities with care, Shielding against resource exhaustion and bestbefore
vulnerabilities, Real-world requirements make firmware updates complex, IoT soft-
ware updates are not just for critical infrastructure, Firmware update security is

more than network security and finally that Something is better than nothing.
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